Cargando…
Three-dimensional simulation of clouds of multi-disperse evaporating saliva droplets in a train cabin
In line with recent ongoing efforts to collect crucial information about the mechanisms of virus diffusion and put them in relation to the effective complexity of the several natural or artificial environments where human beings leave and operate, the present study deals with the dispersion of evapo...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AIP Publishing LLC
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8404387/ https://www.ncbi.nlm.nih.gov/pubmed/34471338 http://dx.doi.org/10.1063/5.0059649 |
_version_ | 1783746158313603072 |
---|---|
author | Visone, M. Lanzetta, M. Lappa, M. Lanzaro, C. Polizio, L. |
author_facet | Visone, M. Lanzetta, M. Lappa, M. Lanzaro, C. Polizio, L. |
author_sort | Visone, M. |
collection | PubMed |
description | In line with recent ongoing efforts to collect crucial information about the mechanisms of virus diffusion and put them in relation to the effective complexity of the several natural or artificial environments where human beings leave and operate, the present study deals with the dispersion of evaporating saliva droplets in the cabin of an interregional train. A relevant physical model is constructed taking into account the state of the art in terms of existing paradigms and their ability to represent some fundamental aspects related to the evolution in time of a cloud of multi-disperse droplets. Conveniently, such a theoretical framework is turned into a computational one that relies on low Mach-number asymptotics and can therefore take advantage of the typical benefits (relatively low computational cost) associated with pressure-based methods. Numerical simulations are used to predict the flow established in the cabin as a result of the ventilation systems and related settings dictated by considerations on passenger comfort. The solution of two-way coupled Lagrangian evolution equations is used to capture the associated dynamics of the dispersed phase and predict its transport in conjunction with the peculiar topology of the considered flow and morphology of solid surfaces, which bound it (including the human beings). Typical physiological processes such as talking or coughing are considered. An analysis on the impact of the multiplicity of droplet sources is also conducted, thereby providing some indications in terms of potential risks for the cabin occupants. |
format | Online Article Text |
id | pubmed-8404387 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | AIP Publishing LLC |
record_format | MEDLINE/PubMed |
spelling | pubmed-84043872021-08-30 Three-dimensional simulation of clouds of multi-disperse evaporating saliva droplets in a train cabin Visone, M. Lanzetta, M. Lappa, M. Lanzaro, C. Polizio, L. Phys Fluids (1994) ARTICLES In line with recent ongoing efforts to collect crucial information about the mechanisms of virus diffusion and put them in relation to the effective complexity of the several natural or artificial environments where human beings leave and operate, the present study deals with the dispersion of evaporating saliva droplets in the cabin of an interregional train. A relevant physical model is constructed taking into account the state of the art in terms of existing paradigms and their ability to represent some fundamental aspects related to the evolution in time of a cloud of multi-disperse droplets. Conveniently, such a theoretical framework is turned into a computational one that relies on low Mach-number asymptotics and can therefore take advantage of the typical benefits (relatively low computational cost) associated with pressure-based methods. Numerical simulations are used to predict the flow established in the cabin as a result of the ventilation systems and related settings dictated by considerations on passenger comfort. The solution of two-way coupled Lagrangian evolution equations is used to capture the associated dynamics of the dispersed phase and predict its transport in conjunction with the peculiar topology of the considered flow and morphology of solid surfaces, which bound it (including the human beings). Typical physiological processes such as talking or coughing are considered. An analysis on the impact of the multiplicity of droplet sources is also conducted, thereby providing some indications in terms of potential risks for the cabin occupants. AIP Publishing LLC 2021-08 2021-08-12 /pmc/articles/PMC8404387/ /pubmed/34471338 http://dx.doi.org/10.1063/5.0059649 Text en © 2021 Author(s). Published under an exclusive license by AIP Publishing. https://creativecommons.org/licenses/by/4.0/All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ). |
spellingShingle | ARTICLES Visone, M. Lanzetta, M. Lappa, M. Lanzaro, C. Polizio, L. Three-dimensional simulation of clouds of multi-disperse evaporating saliva droplets in a train cabin |
title | Three-dimensional simulation of clouds of multi-disperse evaporating saliva droplets in a train cabin |
title_full | Three-dimensional simulation of clouds of multi-disperse evaporating saliva droplets in a train cabin |
title_fullStr | Three-dimensional simulation of clouds of multi-disperse evaporating saliva droplets in a train cabin |
title_full_unstemmed | Three-dimensional simulation of clouds of multi-disperse evaporating saliva droplets in a train cabin |
title_short | Three-dimensional simulation of clouds of multi-disperse evaporating saliva droplets in a train cabin |
title_sort | three-dimensional simulation of clouds of multi-disperse evaporating saliva droplets in a train cabin |
topic | ARTICLES |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8404387/ https://www.ncbi.nlm.nih.gov/pubmed/34471338 http://dx.doi.org/10.1063/5.0059649 |
work_keys_str_mv | AT visonem threedimensionalsimulationofcloudsofmultidisperseevaporatingsalivadropletsinatraincabin AT lanzettam threedimensionalsimulationofcloudsofmultidisperseevaporatingsalivadropletsinatraincabin AT lappam threedimensionalsimulationofcloudsofmultidisperseevaporatingsalivadropletsinatraincabin AT lanzaroc threedimensionalsimulationofcloudsofmultidisperseevaporatingsalivadropletsinatraincabin AT poliziol threedimensionalsimulationofcloudsofmultidisperseevaporatingsalivadropletsinatraincabin |