Cargando…
Estimates of Maize Plant Density from UAV RGB Images Using Faster-RCNN Detection Model: Impact of the Spatial Resolution
Early-stage plant density is an essential trait that determines the fate of a genotype under given environmental conditions and management practices. The use of RGB images taken from UAVs may replace the traditional visual counting in fields with improved throughput, accuracy, and access to plant lo...
Autores principales: | Velumani, K., Lopez-Lozano, R., Madec, S., Guo, W., Gillet, J., Comar, A., Baret, F. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AAAS
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8404552/ https://www.ncbi.nlm.nih.gov/pubmed/34549193 http://dx.doi.org/10.34133/2021/9824843 |
Ejemplares similares
-
SegVeg: Segmenting RGB Images into Green and Senescent Vegetation by Combining Deep and Shallow Methods
por: Serouart, Mario, et al.
Publicado: (2022) -
A Double Swath Configuration for Improving Throughput and Accuracy of Trait Estimate from UAV Images
por: Li, Wenjuan, et al.
Publicado: (2021) -
RTF-RCNN: An Architecture for Real-Time Tomato Plant Leaf Diseases Detection in Video Streaming Using Faster-RCNN
por: Alruwaili, Madallah, et al.
Publicado: (2022) -
The estimation of crop emergence in potatoes by UAV RGB imagery
por: Li, Bo, et al.
Publicado: (2019) -
Ramie Yield Estimation Based on UAV RGB Images
por: Fu, Hongyu, et al.
Publicado: (2021)