Cargando…
Improving Generalization of Deep Learning Models for Diagnostic Pathology by Increasing Variability in Training Data: Experiments on Osteosarcoma Subtypes
BACKGROUND: Artificial intelligence has an emerging progress in diagnostic pathology. A large number of studies of applying deep learning models to histopathological images have been published in recent years. While many studies claim high accuracies, they may fall into the pitfalls of overfitting a...
Autores principales: | Tang, Haiming, Sun, Nanfei, Shen, Steven |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer - Medknow
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8404558/ https://www.ncbi.nlm.nih.gov/pubmed/34497734 http://dx.doi.org/10.4103/jpi.jpi_78_20 |
Ejemplares similares
-
Deep Domain Adversarial Learning for Species-Agnostic Classification of Histologic Subtypes of Osteosarcoma
por: Patkar, Sushant, et al.
Publicado: (2023) -
Convolution kernel and iterative reconstruction affect the diagnostic performance of radiomics and deep learning in lung adenocarcinoma pathological subtypes
por: Zhao, Wei, et al.
Publicado: (2019) -
Translational AI and Deep Learning in Diagnostic Pathology
por: Serag, Ahmed, et al.
Publicado: (2019) -
Osteosarcoma Multi-Omics Landscape and Subtypes
por: Tang, Shan, et al.
Publicado: (2023) -
The effect of variable labels on deep learning models trained to predict breast density
por: Squires, Steven, et al.
Publicado: (2023)