Cargando…
COVID-19 detection method based on SVRNet and SVDNet in lung x-rays
Purpose: To detect and diagnose coronavirus disease 2019 (COVID-19) better and faster, separable VGG-ResNet (SVRNet) and separable VGG-DenseNet (SVDNet) models are proposed, and a detection system is designed, based on lung x-rays to diagnose whether patients are infected with COVID-19. Approach: Co...
Autores principales: | Rao, Kedong, Xie, Kai, Hu, Ziqi, Guo, Xiaolong, Wen, Chang, He, Jianbiao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society of Photo-Optical Instrumentation Engineers
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8404611/ https://www.ncbi.nlm.nih.gov/pubmed/34471647 http://dx.doi.org/10.1117/1.JMI.8.S1.017504 |
Ejemplares similares
-
Detection of COVID-19 from chest x-ray images using transfer learning
por: Manokaran, Jenita, et al.
Publicado: (2021) -
Automatic extraction of cell nuclei from H&E-stained histopathological images
por: Yi, Faliu, et al.
Publicado: (2017) -
Pilot study to evaluate tools to collect pathologist annotations for validating machine learning algorithms
por: Elfer, Katherine, et al.
Publicado: (2022) -
Feature analysis of cell nuclear chromatin distribution in support of cervical cytology
por: Komagata, Hideki, et al.
Publicado: (2017) -
Recurrence analysis on prostate cancer patients with Gleason score 7 using integrated histopathology whole-slide images and genomic data through deep neural networks
por: Ren, Jian, et al.
Publicado: (2018)