Cargando…
Enhanced Magnetic Resonance Image Synthesis with Contrast-Aware Generative Adversarial Networks
A magnetic resonance imaging (MRI) exam typically consists of the acquisition of multiple MR pulse sequences, which are required for a reliable diagnosis. With the rise of generative deep learning models, approaches for the synthesis of MR images are developed to either synthesize additional MR cont...
Autores principales: | Denck, Jonas, Guehring, Jens, Maier, Andreas, Rothgang, Eva |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8404922/ https://www.ncbi.nlm.nih.gov/pubmed/34460769 http://dx.doi.org/10.3390/jimaging7080133 |
Ejemplares similares
-
MR-contrast-aware image-to-image translations with generative adversarial networks
por: Denck, Jonas, et al.
Publicado: (2021) -
Automated Protocoling for MRI Exams—Challenges and Solutions
por: Denck, Jonas, et al.
Publicado: (2022) -
Automated Billing Code Retrieval from MRI Scanner Log Data
por: Denck, Jonas, et al.
Publicado: (2019) -
Photoacoustic image synthesis with generative adversarial networks
por: Schellenberg, Melanie, et al.
Publicado: (2022) -
Generative Adversarial Networks for the Creation of Realistic Artificial Brain Magnetic Resonance Images
por: Kazuhiro, Koshino, et al.
Publicado: (2018)