Cargando…
Customized Efficient Neural Network for COVID-19 Infected Region Identification in CT Images
Background: In the field of biomedical imaging, radiomics is a promising approach that aims to provide quantitative features from images. It is highly dependent on accurate identification and delineation of the volume of interest to avoid mistakes in the implementation of the texture-based predictio...
Autores principales: | Stefano, Alessandro, Comelli, Albert |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8404925/ https://www.ncbi.nlm.nih.gov/pubmed/34460767 http://dx.doi.org/10.3390/jimaging7080131 |
Ejemplares similares
-
Multiclass Convolution Neural Network for Classification of COVID-19 CT Images
por: Woan Ching, Serena Low, et al.
Publicado: (2022) -
Deep convolutional neural network for reduction of contrast-enhanced region on CT images
por: Sumida, Iori, et al.
Publicado: (2019) -
Efficient deep neural networks for classification of COVID-19 based on CT images: Virtualization via software defined radio
por: Fouladi, Saman, et al.
Publicado: (2021) -
Efficient and visualizable convolutional neural networks for COVID-19 classification using Chest CT
por: Garg, Aksh, et al.
Publicado: (2022) -
Liver segmentation in CT imaging with enhanced mask region-based convolutional neural networks
por: Chen, Xiaowen, et al.
Publicado: (2021)