Cargando…
A Green Prospective for Learned Post-Processing in Sparse-View Tomographic Reconstruction
Deep Learning is developing interesting tools that are of great interest for inverse imaging applications. In this work, we consider a medical imaging reconstruction task from subsampled measurements, which is an active research field where Convolutional Neural Networks have already revealed their g...
Autores principales: | Morotti, Elena, Evangelista, Davide, Loli Piccolomini, Elena |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8404937/ https://www.ncbi.nlm.nih.gov/pubmed/34460775 http://dx.doi.org/10.3390/jimaging7080139 |
Ejemplares similares
-
Ambiguity in Solving Imaging Inverse Problems with Deep-Learning-Based Operators
por: Evangelista, Davide, et al.
Publicado: (2023) -
A Model-Based Optimization Framework for Iterative Digital Breast Tomosynthesis Image Reconstruction
por: Loli Piccolomini, Elena, et al.
Publicado: (2021) -
Sparse-view synchrotron X-ray tomographic reconstruction with learning-based sinogram synthesis
por: Cheng, Chang-Chieh, et al.
Publicado: (2023) -
Multi-domain integrative Swin transformer network for sparse-view tomographic reconstruction
por: Pan, Jiayi, et al.
Publicado: (2022) -
Monitoring Italian COVID-19 spread by a forced SEIRD model
por: Loli Piccolomini, Elena, et al.
Publicado: (2020)