Cargando…

Unsupervised Approaches for the Segmentation of Dry ARMD Lesions in Eye Fundus cSLO Images

Age-related macular degeneration (ARMD), a major cause of sight impairment for elderly people, is still not well understood despite intensive research. Measuring the size of the lesions in the fundus is the main biomarker of the severity of the disease and as such is widely used in clinical trials y...

Descripción completa

Detalles Bibliográficos
Autores principales: Royer, Clément, Sublime, Jérémie, Rossant, Florence, Paques, Michel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8404939/
https://www.ncbi.nlm.nih.gov/pubmed/34460779
http://dx.doi.org/10.3390/jimaging7080143
Descripción
Sumario:Age-related macular degeneration (ARMD), a major cause of sight impairment for elderly people, is still not well understood despite intensive research. Measuring the size of the lesions in the fundus is the main biomarker of the severity of the disease and as such is widely used in clinical trials yet only relies on manual segmentation. Artificial intelligence, in particular automatic image analysis based on neural networks, has a major role to play in better understanding the disease, by analyzing the intrinsic optical properties of dry ARMD lesions from patient images. In this paper, we propose a comparison of automatic segmentation methods (classical computer vision method, machine learning method and deep learning method) in an unsupervised context applied on cSLO IR images. Among the methods compared, we propose an adaptation of a fully convolutional network, called W-net, as an efficient method for the segmentation of ARMD lesions. Unlike supervised segmentation methods, our algorithm does not require annotated data which are very difficult to obtain in this application. Our method was tested on a dataset of 328 images and has shown to reach higher quality results than other compared unsupervised methods with a F1 score of 0.87, while having a more stable model, even though in some specific cases, texture/edges-based methods can produce relevant results.