Cargando…
On the Limitations of Visual-Semantic Embedding Networks for Image-to-Text Information Retrieval
Visual-semantic embedding (VSE) networks create joint image–text representations to map images and texts in a shared embedding space to enable various information retrieval-related tasks, such as image–text retrieval, image captioning, and visual question answering. The most recent state-of-the-art...
Autores principales: | Gong, Yan, Cosma, Georgina, Fang, Hui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8404943/ https://www.ncbi.nlm.nih.gov/pubmed/34460761 http://dx.doi.org/10.3390/jimaging7080125 |
Ejemplares similares
-
Hybrid optimization and ontology-based semantic model for efficient text-based information retrieval
por: Kumar, Ram, et al.
Publicado: (2022) -
Semantic Annotation for Biological Information Retrieval System
por: Oshaiba, Mohamed Marouf Z., et al.
Publicado: (2015) -
MedGraph: A semantic biomedical information retrieval framework using knowledge graph embedding for PubMed
por: Ebeid, Islam Akef
Publicado: (2022) -
Care episode retrieval: distributional semantic models for information retrieval in the clinical domain
por: Moen, Hans, et al.
Publicado: (2015) -
Semantic Active Visual Search System Based on Text Information for Large and Unknown Environments
por: Mantelli, Mathias, et al.
Publicado: (2021)