Cargando…

Phase Composition and Its Spatial Distribution in Antique Copper Coins: Neutron Tomography and Diffraction Studies

The chemical and elementary composition, internal arrangement, and spatial distribution of the components of ancient Greek copper coins were studied using XRF analysis, neutron diffraction and neutron tomography methods. The studied coins are interesting from a historical and cultural point of view,...

Descripción completa

Detalles Bibliográficos
Autores principales: Bakirov, Bulat, Saprykina, Irina, Kichanov, Sergey, Mimokhod, Roman, Sudarev, Nikolay, Kozlenko, Denis
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8404944/
https://www.ncbi.nlm.nih.gov/pubmed/34460765
http://dx.doi.org/10.3390/jimaging7080129
Descripción
Sumario:The chemical and elementary composition, internal arrangement, and spatial distribution of the components of ancient Greek copper coins were studied using XRF analysis, neutron diffraction and neutron tomography methods. The studied coins are interesting from a historical and cultural point of view, as they are “Charon’s obol’s”. These coins were discovered at the location of an ancient Greek settlement during archaeological excavations on the “Volna-1” necropolis in Krasnodar Region, Russian Federation. It was determined that the coins are mainly made of a bronze alloy, a tin content that falls in the range of 1.1(2)–7.9(3) wt.%. All coins are highly degraded; corrosion and patina areas occupy volumes from ~27 % to ~62 % of the original coin volumes. The neutron tomography method not only provided 3D data of the spatial distribution of the bronze alloy and the patina with corrosion contamination inside coin volumes, but also restored the minting pattern of several studied coins. Taking into account the obtained results, the origin and use of these coins in the light of historical and economic processes of the Bosporan Kingdom are discussed.