Cargando…
AAWS-Net: Anatomy-aware weakly-supervised learning network for breast mass segmentation
Accurate segmentation of breast masses is an essential step in computer aided diagnosis of breast cancer. The scarcity of annotated training data greatly hinders the model’s generalization ability, especially for the deep learning based methods. However, high-quality image-level annotations are time...
Autores principales: | Sun, Yeheng, Ji, Yule |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8405027/ https://www.ncbi.nlm.nih.gov/pubmed/34460852 http://dx.doi.org/10.1371/journal.pone.0256830 |
Ejemplares similares
-
Deep graph cut network for weakly-supervised semantic segmentation
por: Feng, Jiapei, et al.
Publicado: (2021) -
Anatomy-aware self-supervised learning for anomaly detection in chest radiographs
por: Sato, Junya, et al.
Publicado: (2023) -
Supervised and Weakly Supervised Deep Learning for Segmentation and Counting of Cotton Bolls Using Proximal Imagery
por: Adke, Shrinidhi, et al.
Publicado: (2022) -
WS-RCNN: Learning to Score Proposals for Weakly Supervised Instance Segmentation
por: Ou, Jia-Rong, et al.
Publicado: (2021) -
Weakly Supervised Polyp Segmentation in Colonoscopy Images Using Deep Neural Networks
por: Chen, Siwei, et al.
Publicado: (2022)