Cargando…
The Protective Agents Used against Acrylamide Toxicity: An In Vitro Cell Culture Study-Based Review
Acrylamide is a dangerous electrophile with the potency to react with many biological moieties including proteins, and nucleic acids as well as other macromolecules. Acrylamide was first only known a chemical exposed in working areas as a neurotoxicant, it was later discovered that beyond just being...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royan Institute
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8405082/ https://www.ncbi.nlm.nih.gov/pubmed/34455711 http://dx.doi.org/10.22074/cellj.2021.7286 |
Sumario: | Acrylamide is a dangerous electrophile with the potency to react with many biological moieties including proteins, and nucleic acids as well as other macromolecules. Acrylamide was first only known a chemical exposed in working areas as a neurotoxicant, it was later discovered that beyond just being a neurotoxicant exposed in industrial areas, acrylamide is exposed via daily foods as well. As such, several strategies have been sought to be developed to relieve the toxic spectrum of this chemical. The utilization of a protective agent against acrylamide toxicity was one of those strategies. To date, many agents with protective potency have been investigated. Herein, we compiled these agents and their effects shown in in vitro studies. We used the search engines of Web of Knowledge and searched the keywords "acrylamide" and "protect" in the titles along with the keyword “cell” in the topics. Twenty-one directly related articles out of 35 articles were examined. Briefly, all agents used against acrylamide were reported to exhibit protective activity. In most of these reports, 5 mM concentration of acrylamide and 24-hour treatment were the employed dose and duration. Usually, the beneficial agents were pre-treated to the cells. PC12 cells were the most utilized cell line, and the mitogen-activated protein kinase (MAPK) and nuclear factor erythroid 2-related factor 2 (NRF2) pathways were the most studied pathways. This study, beside other importance, can be utilized as a guide for how the protective studies against acrylamide were done and which parameters were investigated in in vitro acrylamide studies. In conclusion, taking measures is of utmost importance to prevent or alleviate the toxicity of acrylamide, to which we are daily exposed even in our homes. Therefore, future studies should persist in focusing on mitigating acrylamide toxicity. |
---|