Cargando…

Molecular-dynamics-simulation-guided membrane engineering allows the increase of membrane fatty acid chain length in Saccharomyces cerevisiae

The use of lignocellulosic-based fermentation media will be a necessary part of the transition to a circular bio-economy. These media contain many inhibitors to microbial growth, including acetic acid. Under industrially relevant conditions, acetic acid enters the cell predominantly through passive...

Descripción completa

Detalles Bibliográficos
Autores principales: Maertens, Jeroen M., Scrima, Simone, Lambrughi, Matteo, Genheden, Samuel, Trivellin, Cecilia, Eriksson, Leif A., Papaleo, Elena, Olsson, Lisbeth, Bettiga, Maurizio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8405694/
https://www.ncbi.nlm.nih.gov/pubmed/34462478
http://dx.doi.org/10.1038/s41598-021-96757-y
_version_ 1783746380645269504
author Maertens, Jeroen M.
Scrima, Simone
Lambrughi, Matteo
Genheden, Samuel
Trivellin, Cecilia
Eriksson, Leif A.
Papaleo, Elena
Olsson, Lisbeth
Bettiga, Maurizio
author_facet Maertens, Jeroen M.
Scrima, Simone
Lambrughi, Matteo
Genheden, Samuel
Trivellin, Cecilia
Eriksson, Leif A.
Papaleo, Elena
Olsson, Lisbeth
Bettiga, Maurizio
author_sort Maertens, Jeroen M.
collection PubMed
description The use of lignocellulosic-based fermentation media will be a necessary part of the transition to a circular bio-economy. These media contain many inhibitors to microbial growth, including acetic acid. Under industrially relevant conditions, acetic acid enters the cell predominantly through passive diffusion across the plasma membrane. The lipid composition of the membrane determines the rate of uptake of acetic acid, and thicker, more rigid membranes impede passive diffusion. We hypothesized that the elongation of glycerophospholipid fatty acids would lead to thicker and more rigid membranes, reducing the influx of acetic acid. Molecular dynamics simulations were used to predict the changes in membrane properties. Heterologous expression of Arabidopsis thaliana genes fatty acid elongase 1 (FAE1) and glycerol-3-phosphate acyltransferase 5 (GPAT5) increased the average fatty acid chain length. However, this did not lead to a reduction in the net uptake rate of acetic acid. Despite successful strain engineering, the net uptake rate of acetic acid did not decrease. We suggest that changes in the relative abundance of certain membrane lipid headgroups could mitigate the effect of longer fatty acid chains, resulting in a higher net uptake rate of acetic acid.
format Online
Article
Text
id pubmed-8405694
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-84056942021-09-01 Molecular-dynamics-simulation-guided membrane engineering allows the increase of membrane fatty acid chain length in Saccharomyces cerevisiae Maertens, Jeroen M. Scrima, Simone Lambrughi, Matteo Genheden, Samuel Trivellin, Cecilia Eriksson, Leif A. Papaleo, Elena Olsson, Lisbeth Bettiga, Maurizio Sci Rep Article The use of lignocellulosic-based fermentation media will be a necessary part of the transition to a circular bio-economy. These media contain many inhibitors to microbial growth, including acetic acid. Under industrially relevant conditions, acetic acid enters the cell predominantly through passive diffusion across the plasma membrane. The lipid composition of the membrane determines the rate of uptake of acetic acid, and thicker, more rigid membranes impede passive diffusion. We hypothesized that the elongation of glycerophospholipid fatty acids would lead to thicker and more rigid membranes, reducing the influx of acetic acid. Molecular dynamics simulations were used to predict the changes in membrane properties. Heterologous expression of Arabidopsis thaliana genes fatty acid elongase 1 (FAE1) and glycerol-3-phosphate acyltransferase 5 (GPAT5) increased the average fatty acid chain length. However, this did not lead to a reduction in the net uptake rate of acetic acid. Despite successful strain engineering, the net uptake rate of acetic acid did not decrease. We suggest that changes in the relative abundance of certain membrane lipid headgroups could mitigate the effect of longer fatty acid chains, resulting in a higher net uptake rate of acetic acid. Nature Publishing Group UK 2021-08-30 /pmc/articles/PMC8405694/ /pubmed/34462478 http://dx.doi.org/10.1038/s41598-021-96757-y Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Maertens, Jeroen M.
Scrima, Simone
Lambrughi, Matteo
Genheden, Samuel
Trivellin, Cecilia
Eriksson, Leif A.
Papaleo, Elena
Olsson, Lisbeth
Bettiga, Maurizio
Molecular-dynamics-simulation-guided membrane engineering allows the increase of membrane fatty acid chain length in Saccharomyces cerevisiae
title Molecular-dynamics-simulation-guided membrane engineering allows the increase of membrane fatty acid chain length in Saccharomyces cerevisiae
title_full Molecular-dynamics-simulation-guided membrane engineering allows the increase of membrane fatty acid chain length in Saccharomyces cerevisiae
title_fullStr Molecular-dynamics-simulation-guided membrane engineering allows the increase of membrane fatty acid chain length in Saccharomyces cerevisiae
title_full_unstemmed Molecular-dynamics-simulation-guided membrane engineering allows the increase of membrane fatty acid chain length in Saccharomyces cerevisiae
title_short Molecular-dynamics-simulation-guided membrane engineering allows the increase of membrane fatty acid chain length in Saccharomyces cerevisiae
title_sort molecular-dynamics-simulation-guided membrane engineering allows the increase of membrane fatty acid chain length in saccharomyces cerevisiae
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8405694/
https://www.ncbi.nlm.nih.gov/pubmed/34462478
http://dx.doi.org/10.1038/s41598-021-96757-y
work_keys_str_mv AT maertensjeroenm moleculardynamicssimulationguidedmembraneengineeringallowstheincreaseofmembranefattyacidchainlengthinsaccharomycescerevisiae
AT scrimasimone moleculardynamicssimulationguidedmembraneengineeringallowstheincreaseofmembranefattyacidchainlengthinsaccharomycescerevisiae
AT lambrughimatteo moleculardynamicssimulationguidedmembraneengineeringallowstheincreaseofmembranefattyacidchainlengthinsaccharomycescerevisiae
AT genhedensamuel moleculardynamicssimulationguidedmembraneengineeringallowstheincreaseofmembranefattyacidchainlengthinsaccharomycescerevisiae
AT trivellincecilia moleculardynamicssimulationguidedmembraneengineeringallowstheincreaseofmembranefattyacidchainlengthinsaccharomycescerevisiae
AT erikssonleifa moleculardynamicssimulationguidedmembraneengineeringallowstheincreaseofmembranefattyacidchainlengthinsaccharomycescerevisiae
AT papaleoelena moleculardynamicssimulationguidedmembraneengineeringallowstheincreaseofmembranefattyacidchainlengthinsaccharomycescerevisiae
AT olssonlisbeth moleculardynamicssimulationguidedmembraneengineeringallowstheincreaseofmembranefattyacidchainlengthinsaccharomycescerevisiae
AT bettigamaurizio moleculardynamicssimulationguidedmembraneengineeringallowstheincreaseofmembranefattyacidchainlengthinsaccharomycescerevisiae