Cargando…

Author Correction: Geographically weighted machine learning model for untangling spatial heterogeneity of type 2 diabetes mellitus (T2D) prevalence in the USA

Detalles Bibliográficos
Autores principales: Quiñones, Sarah, Goyal, Aditya, Ahmed, Zia U.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8405722/
https://www.ncbi.nlm.nih.gov/pubmed/34462537
http://dx.doi.org/10.1038/s41598-021-97279-3
_version_ 1783746386491080704
author Quiñones, Sarah
Goyal, Aditya
Ahmed, Zia U.
author_facet Quiñones, Sarah
Goyal, Aditya
Ahmed, Zia U.
author_sort Quiñones, Sarah
collection PubMed
description
format Online
Article
Text
id pubmed-8405722
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-84057222021-09-01 Author Correction: Geographically weighted machine learning model for untangling spatial heterogeneity of type 2 diabetes mellitus (T2D) prevalence in the USA Quiñones, Sarah Goyal, Aditya Ahmed, Zia U. Sci Rep Author Correction Nature Publishing Group UK 2021-08-30 /pmc/articles/PMC8405722/ /pubmed/34462537 http://dx.doi.org/10.1038/s41598-021-97279-3 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Author Correction
Quiñones, Sarah
Goyal, Aditya
Ahmed, Zia U.
Author Correction: Geographically weighted machine learning model for untangling spatial heterogeneity of type 2 diabetes mellitus (T2D) prevalence in the USA
title Author Correction: Geographically weighted machine learning model for untangling spatial heterogeneity of type 2 diabetes mellitus (T2D) prevalence in the USA
title_full Author Correction: Geographically weighted machine learning model for untangling spatial heterogeneity of type 2 diabetes mellitus (T2D) prevalence in the USA
title_fullStr Author Correction: Geographically weighted machine learning model for untangling spatial heterogeneity of type 2 diabetes mellitus (T2D) prevalence in the USA
title_full_unstemmed Author Correction: Geographically weighted machine learning model for untangling spatial heterogeneity of type 2 diabetes mellitus (T2D) prevalence in the USA
title_short Author Correction: Geographically weighted machine learning model for untangling spatial heterogeneity of type 2 diabetes mellitus (T2D) prevalence in the USA
title_sort author correction: geographically weighted machine learning model for untangling spatial heterogeneity of type 2 diabetes mellitus (t2d) prevalence in the usa
topic Author Correction
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8405722/
https://www.ncbi.nlm.nih.gov/pubmed/34462537
http://dx.doi.org/10.1038/s41598-021-97279-3
work_keys_str_mv AT quinonessarah authorcorrectiongeographicallyweightedmachinelearningmodelforuntanglingspatialheterogeneityoftype2diabetesmellitust2dprevalenceintheusa
AT goyaladitya authorcorrectiongeographicallyweightedmachinelearningmodelforuntanglingspatialheterogeneityoftype2diabetesmellitust2dprevalenceintheusa
AT ahmedziau authorcorrectiongeographicallyweightedmachinelearningmodelforuntanglingspatialheterogeneityoftype2diabetesmellitust2dprevalenceintheusa