Cargando…
Diagnosing hospital bacteraemia in the framework of predictive, preventive and personalised medicine using electronic health records and machine learning classifiers
BACKGROUND: The bacteraemia prediction is relevant because sepsis is one of the most important causes of morbidity and mortality. Bacteraemia prognosis primarily depends on a rapid diagnosis. The bacteraemia prediction would shorten up to 6 days the diagnosis, and, in conjunction with individual pat...
Autores principales: | Garnica, Oscar, Gómez, Diego, Ramos, Víctor, Hidalgo, J. Ignacio, Ruiz-Giardín, José M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8405861/ https://www.ncbi.nlm.nih.gov/pubmed/34484472 http://dx.doi.org/10.1007/s13167-021-00252-3 |
Ejemplares similares
-
Mortality risks associated with empirical antibiotic activity in Escherichia coli bacteraemia: an analysis of electronic health records
por: Yoon, Chang Ho, et al.
Publicado: (2022) -
Secure IT framework for Personalised Health Data
por: Heikkinen, Jani
Publicado: (2019) -
Framework for Testing Robustness of Machine Learning-Based Classifiers
por: Chuah, Joshua, et al.
Publicado: (2022) -
A Comparison of Fever Classified Chief Complaints and Diagnoses with
Recorded Body Temperatures
por: Araki, Patricia, et al.
Publicado: (2015) -
An integrative machine learning framework for classifying SEER breast cancer
por: Manikandan, P., et al.
Publicado: (2023)