Cargando…
Techno-economic process modelling and Monte Carlo simulation data of uncertainty quantification in field-grown plant-based manufacturing
This data article is related to the research article, “M.J. McNulty, K. Kelada, D. Paul, S. Nandi, and K.A. McDonald, Introducing uncertainty quantification to techno-economic models of manufacturing field-grown plant-made products, Food Bioprod. Process. 128 (2021) 153–165.” The raw and analyzed da...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8405912/ https://www.ncbi.nlm.nih.gov/pubmed/34485647 http://dx.doi.org/10.1016/j.dib.2021.107317 |
Sumario: | This data article is related to the research article, “M.J. McNulty, K. Kelada, D. Paul, S. Nandi, and K.A. McDonald, Introducing uncertainty quantification to techno-economic models of manufacturing field-grown plant-made products, Food Bioprod. Process. 128 (2021) 153–165.” The raw and analyzed data presented are related to generation, analysis, and optimization of ultra-large-scale field-grown plant-based manufacturing of high-value recombinant protein under uncertainty. The data have been acquired using deterministic techno-economic process model simulation in SuperPro Designer integrated with stochastic Monte Carlo-based simulation in Microsoft Excel using the Crystal Ball plug-in. The purpose of the article is to make techno-economic and associated uncertainty data available to be leveraged and adapted for other research purposes. |
---|