Cargando…
Disease-associated mutations impacting BC-loop flexibility trigger long-range transthyretin tetramer destabilization and aggregation
Hereditary transthyretin amyloidosis (ATTR) is an autosomal dominant disease characterized by the extracellular deposition of the transport protein transthyretin (TTR) as amyloid fibrils. Despite the progress achieved in recent years, understanding why different TTR residue substitutions lead to dif...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Biochemistry and Molecular Biology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8406001/ https://www.ncbi.nlm.nih.gov/pubmed/34343569 http://dx.doi.org/10.1016/j.jbc.2021.101039 |
_version_ | 1783746433244987392 |
---|---|
author | Esperante, Sebastián A. Varejāo, Nathalia Pinheiro, Francisca Sant'Anna, Ricardo Luque-Ortega, Juan Román Alfonso, Carlos Sora, Valentina Papaleo, Elena Rivas, Germán Reverter, David Ventura, Salvador |
author_facet | Esperante, Sebastián A. Varejāo, Nathalia Pinheiro, Francisca Sant'Anna, Ricardo Luque-Ortega, Juan Román Alfonso, Carlos Sora, Valentina Papaleo, Elena Rivas, Germán Reverter, David Ventura, Salvador |
author_sort | Esperante, Sebastián A. |
collection | PubMed |
description | Hereditary transthyretin amyloidosis (ATTR) is an autosomal dominant disease characterized by the extracellular deposition of the transport protein transthyretin (TTR) as amyloid fibrils. Despite the progress achieved in recent years, understanding why different TTR residue substitutions lead to different clinical manifestations remains elusive. Here, we studied the molecular basis of disease-causing missense mutations affecting residues R34 and K35. R34G and K35T variants cause vitreous amyloidosis, whereas R34T and K35N mutations result in amyloid polyneuropathy and restrictive cardiomyopathy. All variants are more sensitive to pH-induced dissociation and amyloid formation than the wild-type (WT)-TTR counterpart, specifically in the variants deposited in the eyes amyloid formation occurs close to physiological pHs. Chemical denaturation experiments indicate that all the mutants are less stable than WT-TTR, with the vitreous amyloidosis variants, R34G and K35T, being highly destabilized. Sequence-induced stabilization of the dimer–dimer interface with T119M rendered tetramers containing R34G or K35T mutations resistant to pH-induced aggregation. Because R34 and K35 are among the residues more distant to the TTR interface, their impact in this region is therefore theorized to occur at long range. The crystal structures of double mutants, R34G/T119M and K35T/T119M, together with molecular dynamics simulations indicate that their strong destabilizing effect is initiated locally at the BC loop, increasing its flexibility in a mutation-dependent manner. Overall, the present findings help us to understand the sequence-dynamic-structural mechanistic details of TTR amyloid aggregation triggered by R34 and K35 variants and to link the degree of mutation-induced conformational flexibility to protein aggregation propensity. |
format | Online Article Text |
id | pubmed-8406001 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American Society for Biochemistry and Molecular Biology |
record_format | MEDLINE/PubMed |
spelling | pubmed-84060012021-09-03 Disease-associated mutations impacting BC-loop flexibility trigger long-range transthyretin tetramer destabilization and aggregation Esperante, Sebastián A. Varejāo, Nathalia Pinheiro, Francisca Sant'Anna, Ricardo Luque-Ortega, Juan Román Alfonso, Carlos Sora, Valentina Papaleo, Elena Rivas, Germán Reverter, David Ventura, Salvador J Biol Chem Research Article Hereditary transthyretin amyloidosis (ATTR) is an autosomal dominant disease characterized by the extracellular deposition of the transport protein transthyretin (TTR) as amyloid fibrils. Despite the progress achieved in recent years, understanding why different TTR residue substitutions lead to different clinical manifestations remains elusive. Here, we studied the molecular basis of disease-causing missense mutations affecting residues R34 and K35. R34G and K35T variants cause vitreous amyloidosis, whereas R34T and K35N mutations result in amyloid polyneuropathy and restrictive cardiomyopathy. All variants are more sensitive to pH-induced dissociation and amyloid formation than the wild-type (WT)-TTR counterpart, specifically in the variants deposited in the eyes amyloid formation occurs close to physiological pHs. Chemical denaturation experiments indicate that all the mutants are less stable than WT-TTR, with the vitreous amyloidosis variants, R34G and K35T, being highly destabilized. Sequence-induced stabilization of the dimer–dimer interface with T119M rendered tetramers containing R34G or K35T mutations resistant to pH-induced aggregation. Because R34 and K35 are among the residues more distant to the TTR interface, their impact in this region is therefore theorized to occur at long range. The crystal structures of double mutants, R34G/T119M and K35T/T119M, together with molecular dynamics simulations indicate that their strong destabilizing effect is initiated locally at the BC loop, increasing its flexibility in a mutation-dependent manner. Overall, the present findings help us to understand the sequence-dynamic-structural mechanistic details of TTR amyloid aggregation triggered by R34 and K35 variants and to link the degree of mutation-induced conformational flexibility to protein aggregation propensity. American Society for Biochemistry and Molecular Biology 2021-07-31 /pmc/articles/PMC8406001/ /pubmed/34343569 http://dx.doi.org/10.1016/j.jbc.2021.101039 Text en © 2021 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Research Article Esperante, Sebastián A. Varejāo, Nathalia Pinheiro, Francisca Sant'Anna, Ricardo Luque-Ortega, Juan Román Alfonso, Carlos Sora, Valentina Papaleo, Elena Rivas, Germán Reverter, David Ventura, Salvador Disease-associated mutations impacting BC-loop flexibility trigger long-range transthyretin tetramer destabilization and aggregation |
title | Disease-associated mutations impacting BC-loop flexibility trigger long-range transthyretin tetramer destabilization and aggregation |
title_full | Disease-associated mutations impacting BC-loop flexibility trigger long-range transthyretin tetramer destabilization and aggregation |
title_fullStr | Disease-associated mutations impacting BC-loop flexibility trigger long-range transthyretin tetramer destabilization and aggregation |
title_full_unstemmed | Disease-associated mutations impacting BC-loop flexibility trigger long-range transthyretin tetramer destabilization and aggregation |
title_short | Disease-associated mutations impacting BC-loop flexibility trigger long-range transthyretin tetramer destabilization and aggregation |
title_sort | disease-associated mutations impacting bc-loop flexibility trigger long-range transthyretin tetramer destabilization and aggregation |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8406001/ https://www.ncbi.nlm.nih.gov/pubmed/34343569 http://dx.doi.org/10.1016/j.jbc.2021.101039 |
work_keys_str_mv | AT esperantesebastiana diseaseassociatedmutationsimpactingbcloopflexibilitytriggerlongrangetransthyretintetramerdestabilizationandaggregation AT varejaonathalia diseaseassociatedmutationsimpactingbcloopflexibilitytriggerlongrangetransthyretintetramerdestabilizationandaggregation AT pinheirofrancisca diseaseassociatedmutationsimpactingbcloopflexibilitytriggerlongrangetransthyretintetramerdestabilizationandaggregation AT santannaricardo diseaseassociatedmutationsimpactingbcloopflexibilitytriggerlongrangetransthyretintetramerdestabilizationandaggregation AT luqueortegajuanroman diseaseassociatedmutationsimpactingbcloopflexibilitytriggerlongrangetransthyretintetramerdestabilizationandaggregation AT alfonsocarlos diseaseassociatedmutationsimpactingbcloopflexibilitytriggerlongrangetransthyretintetramerdestabilizationandaggregation AT soravalentina diseaseassociatedmutationsimpactingbcloopflexibilitytriggerlongrangetransthyretintetramerdestabilizationandaggregation AT papaleoelena diseaseassociatedmutationsimpactingbcloopflexibilitytriggerlongrangetransthyretintetramerdestabilizationandaggregation AT rivasgerman diseaseassociatedmutationsimpactingbcloopflexibilitytriggerlongrangetransthyretintetramerdestabilizationandaggregation AT reverterdavid diseaseassociatedmutationsimpactingbcloopflexibilitytriggerlongrangetransthyretintetramerdestabilizationandaggregation AT venturasalvador diseaseassociatedmutationsimpactingbcloopflexibilitytriggerlongrangetransthyretintetramerdestabilizationandaggregation |