Cargando…
fSHAPE, fSHAPE-eCLIP, and SHAPE-eCLIP probe transcript regions that interact with specific proteins
Selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE) structure probing techniques characterize the secondary structure of RNA molecules, which influence their functions and interactions. A variation of SHAPE, footprinting SHAPE (fSHAPE), probes RNA in the presence and absence of prot...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8406031/ https://www.ncbi.nlm.nih.gov/pubmed/34485935 http://dx.doi.org/10.1016/j.xpro.2021.100762 |
Sumario: | Selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE) structure probing techniques characterize the secondary structure of RNA molecules, which influence their functions and interactions. A variation of SHAPE, footprinting SHAPE (fSHAPE), probes RNA in the presence and absence of protein to identify RNA bases that hydrogen-bond with protein. SHAPE or fSHAPE coupled with enhanced crosslinking and immunoprecipitation (SHAPE-eCLIP or fSHAPE-eCLIP) pulls down RNAs bound by any protein of interest and returns their structure or protein interaction information, respectively. Here, we describe detailed protocols for SHAPE-eCLIP and fSHAPE-eCLIP and an analysis protocol for fSHAPE. For complete details on the use and execution of these protocols, please refer to Corley et al. (2020). |
---|