Cargando…

Protospacer-Adjacent Motif Specificity during Clostridioides difficile Type I-B CRISPR-Cas Interference and Adaptation

CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) systems provide prokaryotes with efficient protection against foreign nucleic acid invaders. We have recently demonstrated the defensive interference function of a CRISPR-Cas system from Clostridioides (Clostr...

Descripción completa

Detalles Bibliográficos
Autores principales: Maikova, Anna, Boudry, Pierre, Shiriaeva, Anna, Vasileva, Aleksandra, Boutserin, Anaïs, Medvedeva, Sofia, Semenova, Ekaterina, Severinov, Konstantin, Soutourina, Olga
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8406132/
https://www.ncbi.nlm.nih.gov/pubmed/34425703
http://dx.doi.org/10.1128/mBio.02136-21
Descripción
Sumario:CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) systems provide prokaryotes with efficient protection against foreign nucleic acid invaders. We have recently demonstrated the defensive interference function of a CRISPR-Cas system from Clostridioides (Clostridium) difficile, a major human enteropathogen, and showed that it could be harnessed for efficient genome editing in this bacterium. However, molecular details are still missing on CRISPR-Cas function for adaptation and sequence requirements for both interference and new spacer acquisition in this pathogen. Despite accumulating knowledge on the individual CRISPR-Cas systems in various prokaryotes, no data are available on the adaptation process in bacterial type I-B CRISPR-Cas systems. Here, we report the first experimental evidence that the C. difficile type I-B CRISPR-Cas system acquires new spacers upon overexpression of its adaptation module. The majority of new spacers are derived from a plasmid expressing Cas proteins required for adaptation or from regions of the C. difficile genome where generation of free DNA termini is expected. Results from protospacer-adjacent motif (PAM) library experiments and plasmid conjugation efficiency assays indicate that C. difficile CRISPR-Cas requires the YCN consensus PAM for efficient interference. We revealed a functional link between the adaptation and interference machineries, since newly adapted spacers are derived from sequences associated with a CCN PAM, which fits the interference consensus. The definition of functional PAMs and establishment of relative activity levels of each of the multiple C. difficile CRISPR arrays in present study are necessary for further CRISPR-based biotechnological and medical applications involving this organism.