Cargando…
Comprehensive Analysis of Human Cytomegalovirus- and HIV-Mediated Plasma Membrane Remodeling in Macrophages
The plasma membrane (PM) must be overcome by viruses during entry and release. Furthermore, the PM represents the cellular communication compartment and the immune system interface. Hence, viruses have evolved sophisticated strategies to remodel the PM, for instance to avoid immune sensing and clear...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8406226/ https://www.ncbi.nlm.nih.gov/pubmed/34399625 http://dx.doi.org/10.1128/mBio.01770-21 |
Sumario: | The plasma membrane (PM) must be overcome by viruses during entry and release. Furthermore, the PM represents the cellular communication compartment and the immune system interface. Hence, viruses have evolved sophisticated strategies to remodel the PM, for instance to avoid immune sensing and clearance of infected cells. We performed a comprehensive analysis of cell surface dysregulation by two human-pathogenic viruses, human cytomegalovirus (HCMV) and human immunodeficiency virus type 1 (HIV-1), in primary macrophages, which are classical antigen-presenting cells and orchestrators of the immune system. Scanning ion conductance microscopy revealed a loss of roughness and an overall smooth phenotype of HCMV-infected macrophages, in contrast to HIV-1 infection. This phenotype was also evident on the molecular level. When we screened for cell surface receptors modulated by HCMV, 42 of 332 receptors tested were up- or downregulated, whereas HIV-1 affected only 7 receptors. In particular CD164, CD84, and CD180 were targeted by HCMV. Mechanistically, HCMV induced transcriptional silencing of these receptors in an interferon (IFN)-independent manner, and expression was reduced not only by lab-adapted HCMV but also by clinical HCMV isolates. Altogether, our plasma membrane profiling of human macrophages provides clues to understand how viruses evade the immune system and identified novel cell surface receptors targeted by HCMV. |
---|