Cargando…

Intra-Ramanome Correlation Analysis Unveils Metabolite Conversion Network from an Isogenic Population of Cells

To reveal the dynamic features of cellular systems, such as the correlation among phenotypes, a time or condition series set of samples is typically required. Here, we propose intra-ramanome correlation analysis (IRCA) to achieve this goal from just one snapshot of an isogenic population, via pairwi...

Descripción completa

Detalles Bibliográficos
Autores principales: He, Yuehui, Huang, Shi, Zhang, Peng, Ji, Yuetong, Xu, Jian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8406334/
https://www.ncbi.nlm.nih.gov/pubmed/34465024
http://dx.doi.org/10.1128/mBio.01470-21
Descripción
Sumario:To reveal the dynamic features of cellular systems, such as the correlation among phenotypes, a time or condition series set of samples is typically required. Here, we propose intra-ramanome correlation analysis (IRCA) to achieve this goal from just one snapshot of an isogenic population, via pairwise correlation among the cells of the thousands of Raman peaks in single-cell Raman spectra (SCRS), i.e., by taking advantage of the intrinsic metabolic heterogeneity among individual cells. For example, IRCA of Chlamydomonas reinhardtii under nitrogen depletion revealed metabolite conversions at each time point plus their temporal dynamics, such as protein-to-starch conversion followed by starch-to-triacylglycerol (TAG) conversion, and conversion of membrane lipids to TAG. Such among-cell correlations in SCRS vanished when the starch-biosynthesis pathway was knocked out yet were fully restored by genetic complementation. Extension of IRCA to 64 microalgal, fungal, and bacterial ramanomes suggests the IRCA-derived metabolite conversion network as an intrinsic metabolic signature of isogenic cellular population that is reliable, species-resolved, and state-sensitive. The high-throughput, low cost, excellent scalability, and general extendibility of IRCA suggest its broad applications.