Cargando…
Efficient framework for predicting MiRNA-disease associations based on improved hybrid collaborative filtering
BACKGROUND: Accumulating studies indicates that microRNAs (miRNAs) play vital roles in the process of development and progression of many human complex diseases. However, traditional biochemical experimental methods for identifying disease-related miRNAs cost large amount of time, manpower, material...
Autores principales: | Nie, Ru, Li, Zhengwei, You, Zhu-hong, Bao, Wenzheng, Li, Jiashu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8406577/ https://www.ncbi.nlm.nih.gov/pubmed/34461870 http://dx.doi.org/10.1186/s12911-021-01616-5 |
Ejemplares similares
-
MCCMF: collaborative matrix factorization based on matrix completion for predicting miRNA-disease associations
por: Wu, Tian-Ru, et al.
Publicado: (2020) -
Prediction of miRNA-Disease Association Using Deep Collaborative Filtering
por: Wang, Li, et al.
Publicado: (2021) -
Predicting MiRNA-disease associations by multiple meta-paths fusion graph embedding model
por: Zhang, Lei, et al.
Publicado: (2020) -
HuntMi: an efficient and taxon-specific approach in pre-miRNA identification
por: Gudyś, Adam, et al.
Publicado: (2013) -
miTAR: a hybrid deep learning-based approach for predicting miRNA targets
por: Gu, Tongjun, et al.
Publicado: (2021)