Cargando…

Inverted repeats in coronavirus SARS-CoV-2 genome manifest the evolution events

The world faces a great unforeseen challenge through the COVID-19 pandemic caused by coronavirus SARS-CoV-2. The virus genome structure and evolution are positioned front and center for further understanding insights on vaccine development, monitoring of transmission trajectories, and prevention of...

Descripción completa

Detalles Bibliográficos
Autores principales: Yin, Changchuan, Yau, Stephen S.-T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Ltd. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8406619/
https://www.ncbi.nlm.nih.gov/pubmed/34478743
http://dx.doi.org/10.1016/j.jtbi.2021.110885
Descripción
Sumario:The world faces a great unforeseen challenge through the COVID-19 pandemic caused by coronavirus SARS-CoV-2. The virus genome structure and evolution are positioned front and center for further understanding insights on vaccine development, monitoring of transmission trajectories, and prevention of zoonotic infections of new coronaviruses. Of particular interest are genomic elements Inverse Repeats (IRs), which maintain genome stability, regulate gene expressions, and are the targets of mutations. However, little research attention is given to the IR content analysis in the SARS-CoV-2 genome. In this study, we propose a geometric analysis method and using the method to investigate the distributions of IRs in SARS-CoV-2 and its related coronavirus genomes. The method represents each genomic IR sequence pair as a single point and constructs the geometric shape of the genome using the IRs. Thus, the IR shape can be considered as the signature of the genome. The genomes of different coronaviruses are then compared using the constructed IR shapes. The results demonstrate that SARS-CoV-2 genome, specifically, has an abundance of IRs, and the IRs in coronavirus genomes show an increase during evolution events.