Cargando…
Label propagation-based semi-supervised feature selection on decoding clinical phenotypes with RNA-seq data
BACKGROUND: Clinically, behavior, cognitive, and mental functions are affected during the neurodegenerative disease progression. To date, the molecular pathogenesis of these complex disease is still unclear. With the rapid development of sequencing technologies, it is possible to delicately decode t...
Autores principales: | Jiang, Xue, Chen, Miao, Song, Weichen, Lin, Guan Ning |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8406783/ https://www.ncbi.nlm.nih.gov/pubmed/34465339 http://dx.doi.org/10.1186/s12920-021-00985-0 |
Ejemplares similares
-
A semi-supervised approach using label propagation to support citation screening
por: Kontonatsios, Georgios, et al.
Publicado: (2017) -
Protein Ranking by Semi-Supervised Network Propagation
por: Weston, Jason, et al.
Publicado: (2006) -
Simple strategies for semi-supervised feature selection
por: Sechidis, Konstantinos, et al.
Publicado: (2017) -
Learning to propagate labels on graphs: An iterative multitask regression framework for semi-supervised hyperspectral dimensionality reduction
por: Hong, Danfeng, et al.
Publicado: (2019) -
Zero-Shot Neural Decoding with Semi-Supervised Multi-View Embedding
por: Akamatsu, Yusuke, et al.
Publicado: (2023)