Cargando…
Modeling and prediction of pressure injury in hospitalized patients using artificial intelligence
BACKGROUND: Hospital-acquired pressure injuries (PIs) induce significant patient suffering, inflate healthcare costs, and increase clinical co-morbidities. PIs are mostly due to bed-immobility, sensory impairment, bed positioning, and length of hospital stay. In this study, we use electronic health...
Autores principales: | Anderson, Christine, Bekele, Zerihun, Qiu, Yongkai, Tschannen, Dana, Dinov, Ivo D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8406893/ https://www.ncbi.nlm.nih.gov/pubmed/34461876 http://dx.doi.org/10.1186/s12911-021-01608-5 |
Ejemplares similares
-
Explainable Artificial Intelligence for Predicting Hospital-Acquired Pressure Injuries in COVID-19–Positive Critical Care Patients
por: Alderden, Jenny, et al.
Publicado: (2022) -
Artificial intelligence to predict in-hospital mortality using novel anatomical injury score
por: Kang, Wu Seong, et al.
Publicado: (2021) -
Predicting scheduled hospital attendance with artificial intelligence
por: Nelson, Amy, et al.
Publicado: (2019) -
A Prediction Model for Primary Anterior Cruciate Ligament Injury Using Artificial Intelligence
por: Tamimi, Iskandar, et al.
Publicado: (2021) -
Artificial Intelligence in Acute Kidney Injury Risk Prediction
por: Gameiro, Joana, et al.
Publicado: (2020)