Cargando…
CO(2) Utilization Through its Reduction to Methanol: Design of Catalysts Using Quantum Mechanics and Machine Learning
Reducing levels of CO(2), a greenhouse gas, in the earth’s atmosphere is crucial to addressing the problem of climate change. An effective strategy to achieve this without compromising the scale of industrial activity involves use of renewable energy and waste heat in conversion of CO(2) to useful p...
Autores principales: | Manae, Meghna A., Dheer, Lakshay, Waghmare, Umesh V. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Singapore
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8407405/ https://www.ncbi.nlm.nih.gov/pubmed/35837006 http://dx.doi.org/10.1007/s41403-021-00262-7 |
Ejemplares similares
-
Supported quantum clusters of silver as enhanced catalysts for reduction
por: Leelavathi, Annamalai, et al.
Publicado: (2011) -
Iterative
Approach of Experiment–Machine Learning
for Efficient Optimization of Environmental Catalysts: An Example
of NO(x) Selective Reduction Catalysts
por: Chen, Yulong, et al.
Publicado: (2023) -
Quantum-mechanical transition-state model combined with machine learning provides catalyst design features for selective Cr olefin oligomerization
por: Maley, Steven M., et al.
Publicado: (2020) -
Design and Utilization of a Direct Methanol Fuel Cell
por: Ahmed, Aser Alaa, et al.
Publicado: (2022) -
Theory-guided development of homogeneous catalysts for the reduction of CO(2) to formate, formaldehyde, and methanol derivatives
por: Cramer, Hanna H., et al.
Publicado: (2023)