Cargando…
Dendritic normalisation improves learning in sparsely connected artificial neural networks
Artificial neural networks, taking inspiration from biological neurons, have become an invaluable tool for machine learning applications. Recent studies have developed techniques to effectively tune the connectivity of sparsely-connected artificial neural networks, which have the potential to be mor...
Autores principales: | Bird, Alex D., Jedlicka, Peter, Cuntz, Hermann |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8407571/ https://www.ncbi.nlm.nih.gov/pubmed/34370727 http://dx.doi.org/10.1371/journal.pcbi.1009202 |
Ejemplares similares
-
Pareto optimality, economy–effectiveness trade-offs and ion channel degeneracy: improving population modelling for single neurons
por: Jedlicka, Peter, et al.
Publicado: (2022) -
Optimal Current Transfer in Dendrites
por: Bird, Alex D., et al.
Publicado: (2016) -
Unifying Long-Term Plasticity Rules for Excitatory Synapses by Modeling Dendrites of Cortical Pyramidal Neurons
por: Ebner, Christian, et al.
Publicado: (2019) -
Scalable training of artificial neural networks with adaptive sparse connectivity inspired by network science
por: Mocanu, Decebal Constantin, et al.
Publicado: (2018) -
A general homeostatic principle following lesion induced dendritic remodeling
por: Platschek, Steffen, et al.
Publicado: (2016)