Cargando…
Predicting mortality among patients with liver cirrhosis in electronic health records with machine learning
OBJECTIVE: Liver cirrhosis is a leading cause of death and effects millions of people in the United States. Early mortality prediction among patients with cirrhosis might give healthcare providers more opportunity to effectively treat the condition. We hypothesized that laboratory test results and o...
Autores principales: | Guo, Aixia, Mazumder, Nikhilesh R., Ladner, Daniela P., Foraker, Randi E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8407576/ https://www.ncbi.nlm.nih.gov/pubmed/34464403 http://dx.doi.org/10.1371/journal.pone.0256428 |
Ejemplares similares
-
Application of a time-series deep learning model to predict cardiac dysrhythmias in electronic health records
por: Guo, Aixia, et al.
Publicado: (2021) -
Predicting cardiovascular health trajectories in time-series electronic health records with LSTM models
por: Guo, Aixia, et al.
Publicado: (2021) -
Development and Structure of an Accurate Machine Learning Algorithm to Predict Inpatient Mortality and Hospice Outcomes in the Coronavirus Disease 2019 Era
por: Chi, Stephen, et al.
Publicado: (2022) -
Discovering disease–disease associations using electronic health records in The Guideline Advantage (TGA) dataset
por: Guo, Aixia, et al.
Publicado: (2021) -
The National COVID Cohort Collaborative: Analyses of Original and Computationally Derived Electronic Health Record Data
por: Foraker, Randi, et al.
Publicado: (2021)