Cargando…
Multi-scale inference of genetic trait architecture using biologically annotated neural networks
In this article, we present Biologically Annotated Neural Networks (BANNs), a nonlinear probabilistic framework for association mapping in genome-wide association (GWA) studies. BANNs are feedforward models with partially connected architectures that are based on biological annotations. This setup y...
Autores principales: | Demetci, Pinar, Cheng, Wei, Darnell, Gregory, Zhou, Xiang, Ramachandran, Sohini, Crawford, Lorin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8407593/ https://www.ncbi.nlm.nih.gov/pubmed/34411094 http://dx.doi.org/10.1371/journal.pgen.1009754 |
Ejemplares similares
-
Estimation of non-null SNP effect size distributions enables the detection of enriched genes underlying complex traits
por: Cheng, Wei, et al.
Publicado: (2020) -
Uncertainty quantification in variable selection for genetic fine-mapping using bayesian neural networks
por: Cheng, Wei, et al.
Publicado: (2022) -
Inferring multi-scale neural mechanisms with brain network modelling
por: Schirner, Michael, et al.
Publicado: (2018) -
MegaLMM: Mega-scale linear mixed models for genomic predictions with thousands of traits
por: Runcie, Daniel E., et al.
Publicado: (2021) -
Combinatorial and statistical prediction of gene expression from haplotype sequence
por: Alpay, Berk A, et al.
Publicado: (2020)