Cargando…
Predicting and forecasting the impact of local outbreaks of COVID-19: use of SEIR-D quantitative epidemiological modelling for healthcare demand and capacity
BACKGROUND: The world is experiencing local/regional hotspots and spikes in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes COVID-19 disease. We aimed to formulate an applicable epidemiological model to accurately predict and forecast the impact of local outbreaks of C...
Autores principales: | Campillo-Funollet, Eduard, Van Yperen, James, Allman, Phil, Bell, Michael, Beresford, Warren, Clay, Jacqueline, Dorey, Matthew, Evans, Graham, Gilchrist, Kate, Memon, Anjum, Pannu, Gurprit, Walkley, Ryan, Watson, Mark, Madzvamuse, Anotida |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8407866/ https://www.ncbi.nlm.nih.gov/pubmed/34244764 http://dx.doi.org/10.1093/ije/dyab106 |
Ejemplares similares
-
A hospital demand and capacity intervention approach for COVID-19
por: Van Yperen, James, et al.
Publicado: (2023) -
Reformulating the susceptible–infectious–removed model in terms of the number of detected cases: well-posedness of the observational model
por: Campillo-Funollet, Eduard, et al.
Publicado: (2022) -
Bayesian Parameter Identification for Turing Systems on Stationary and Evolving Domains
por: Campillo-Funollet, Eduard, et al.
Publicado: (2018) -
Model Input and Optimization: Improving the Speed and Accuracy of Our COVID-19 Hospitalization Forecasts
por: Rhea, Sarah, et al.
Publicado: (2021) -
An integrated framework for quantifying immune-tumour interactions in a 3D co-culture model
por: Al-Hity, Gheed, et al.
Publicado: (2021)