Cargando…
Deep Learning-Based Image Automatic Assessment and Nursing of Upper Limb Motor Function in Stroke Patients
This paper mainly introduces the relevant contents of automatic assessment of upper limb mobility after stroke, including the relevant knowledge of clinical assessment of upper limb mobility, Kinect sensor to realize spatial location tracking of upper limb bone points, and GCRNN model construction p...
Autores principales: | Chen, Xue, Shi, Yuanyuan, Wang, Yanjun, Cheng, Yuanjuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8407988/ https://www.ncbi.nlm.nih.gov/pubmed/34476048 http://dx.doi.org/10.1155/2021/9059411 |
Ejemplares similares
-
Motor Function Assessment of Upper Limb in Stroke Patients
por: Pan, Bingyu, et al.
Publicado: (2021) -
The use of machine learning and deep learning techniques to assess proprioceptive impairments of the upper limb after stroke
por: Hossain, Delowar, et al.
Publicado: (2023) -
Motor‐imagery ability and function of hemiplegic upper limb in stroke patients
por: Morioka, Shu, et al.
Publicado: (2019) -
Deep Transfer Learning for Automatic Prediction of Hemorrhagic Stroke on CT Images
por: Rao, B. Nageswara, et al.
Publicado: (2022) -
Phantom limb perception interferes with motor imagery after unilateral upper-limb amputation
por: Lyu, Yuanyuan, et al.
Publicado: (2016)