Cargando…
Using Convolutional Neural Network with Taguchi Parametric Optimization for Knee Segmentation from X-Ray Images
Loss of knee cartilage can cause intense pain at the knee epiphysis and this is one of the most common diseases worldwide. To diagnose this condition, the distance between the femur and tibia is calculated based on X-ray images. Accurate segmentation of the femur and tibia is required to assist in t...
Autores principales: | Kim, Young Jae, Lee, Seung Ro, Choi, Ja-Young, Kim, Kwang Gi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8408001/ https://www.ncbi.nlm.nih.gov/pubmed/34476259 http://dx.doi.org/10.1155/2021/5521009 |
Ejemplares similares
-
Segmentation Performance Comparison Considering Regional Characteristics in Chest X-ray Using Deep Learning
por: Lee, Hyo Min, et al.
Publicado: (2022) -
AngioNet: a convolutional neural network for vessel segmentation in X-ray angiography
por: Iyer, Kritika, et al.
Publicado: (2021) -
Convolutional neural network-based automated segmentation and labeling of the lumbar spine X-ray
por: Kónya, Sándor, et al.
Publicado: (2021) -
Osteoporosis diagnosis in knee X-rays by transfer learning based on convolution neural network
por: Wani, Insha Majeed, et al.
Publicado: (2022) -
Optimization of segmented thermoelectric generator using Taguchi and ANOVA techniques
por: Kishore, Ravi Anant, et al.
Publicado: (2017)