Cargando…
A well-trained artificial neural network for predicting the rheological behavior of MWCNT–Al(2)O(3) (30–70%)/oil SAE40 hybrid nanofluid
In this study, the influence of different volume fractions ([Formula: see text] ) of nanoparticles and temperatures on the dynamic viscosity ([Formula: see text] ) of MWCNT–Al(2)O(3) (30–70%)/oil SAE40 hybrid nanofluid was examined by ANN. For this reason, the [Formula: see text] was derived for 203...
Autores principales: | Esfe, Mohammad Hemmat, Eftekhari, S. Ali, Hekmatifar, Maboud, Toghraie, Davood |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8408142/ https://www.ncbi.nlm.nih.gov/pubmed/34465796 http://dx.doi.org/10.1038/s41598-021-96808-4 |
Ejemplares similares
-
Experimental Study of Rheological Behavior of MWCNT-Al(2)O(3)/SAE50 Hybrid Nanofluid to Provide the Best Nano-lubrication Conditions
por: Hemmat Esfe, Mohammad, et al.
Publicado: (2022) -
Optimal viscosity modelling of 10W40 oil-based MWCNT (40%)-TiO(2) (60%) nanofluid using Response Surface Methodology (RSM)
por: Hemmat Esfe, Mohammad, et al.
Publicado: (2022) -
Investigating the rheological behavior of a hybrid nanofluid (HNF) to present to the industry
por: Hemmat Esfe, Mohammad, et al.
Publicado: (2022) -
An optimal feed-forward artificial neural network model and a new empirical correlation for prediction of the relative viscosity of Al(2)O(3)-engine oil nanofluid
por: Hemmat Esfe, Mohammad, et al.
Publicado: (2021) -
Science and Technology of Additive Manufacturing Progress: Processes, Materials, and Applications
por: Monfared, Vahid, et al.
Publicado: (2023)