Cargando…
Asymmetric coordinate attention spectral-spatial feature fusion network for hyperspectral image classification
In recent years, the hyperspectral classification algorithm based on deep learning has received widespread attention, but the existing network models have higher model complexity and require more time consumption. In order to further improve the accuracy of hyperspectral image classification and red...
Autores principales: | Cheng, Shuli, Wang, Liejun, Du, Anyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8408164/ https://www.ncbi.nlm.nih.gov/pubmed/34465852 http://dx.doi.org/10.1038/s41598-021-97029-5 |
Ejemplares similares
-
An Effective Hyperspectral Image Classification Network Based on Multi-Head Self-Attention and Spectral-Coordinate Attention
por: Zhang, Minghua, et al.
Publicado: (2023) -
Data Field Modeling and Spectral-Spatial Feature Fusion for Hyperspectral Data Classification
por: Liu, Da, et al.
Publicado: (2016) -
Spectral-Spatial Attention Transformer with Dense Connection for Hyperspectral Image Classification
por: Dang, Lanxue, et al.
Publicado: (2022) -
A new hyperspectral image classification method based on spatial-spectral features
por: Shenming, Qu, et al.
Publicado: (2022) -
Spatial–Spectral Feature Refinement for Hyperspectral Image Classification Based on Attention-Dense 3D-2D-CNN
por: Zhang, Jin, et al.
Publicado: (2020)