Cargando…
Statistical guidelines for quality control of next-generation sequencing techniques
More and more next-generation sequencing (NGS) data are made available every day. However, the quality of this data is not always guaranteed. Available quality control tools require profound knowledge to correctly interpret the multiplicity of quality features. Moreover, it is usually difficult to k...
Autores principales: | Sprang, Maximilian, Krüger, Matteo, Andrade-Navarro, Miguel A, Fontaine, Jean-Fred |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Life Science Alliance LLC
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8408346/ https://www.ncbi.nlm.nih.gov/pubmed/34462322 http://dx.doi.org/10.26508/lsa.202101113 |
Ejemplares similares
-
seqQscorer: automated quality control of next-generation sequencing data using machine learning
por: Albrecht, Steffen, et al.
Publicado: (2021) -
Batch effect detection and correction in RNA-seq data using machine-learning-based automated assessment of quality
por: Sprang, Maximilian, et al.
Publicado: (2022) -
Guidelines for diagnostic next-generation sequencing
por: Matthijs, Gert, et al.
Publicado: (2016) -
CCMG practice guideline: laboratory guidelines for next-generation sequencing
por: Hume, Stacey, et al.
Publicado: (2019) -
Statistical analysis of next generation sequencing data
por: Datta, Somnath, et al.
Publicado: (2014)