Cargando…
Combination Therapy of TRAIL and Thymoquinone Induce Breast Cancer Cell Cytotoxicity-Mediated Apoptosis and Cell Cycle Arrest
OBJECTIVE: Cancer is one of the leading causes of mortality in both developed and developing nations. The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is characterized by its ability to selectively trigger apoptosis in cancer cells. TRAIL-based interventions have led to the develo...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
West Asia Organization for Cancer Prevention
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8408384/ https://www.ncbi.nlm.nih.gov/pubmed/34048180 http://dx.doi.org/10.31557/APJCP.2021.22.5.1513 |
Sumario: | OBJECTIVE: Cancer is one of the leading causes of mortality in both developed and developing nations. The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is characterized by its ability to selectively trigger apoptosis in cancer cells. TRAIL-based interventions have led to the development of recombinant human (rhTRAIL) as a promising therapy for different types of human cancer. Thymoquinone (TQ) has been shown to exert anticancer effect. The aim of the current study is to investigate the anticancer effect of the combinatorial therapy of TRAIL+TQ against human breast cancer cells. METHODS: To achieve this hypothesis, cytotoxicity using MTT assay, as well as apoptosis and cell cycle using flow cytometric technique were preceded against breast cancer MCF-7 and MDA-MB-231 cancerous cell lines. RESULTS: The current study showed that TRAIL induced cell cycle arrest and apoptosis. Moreover, it inhibited proliferation of MDA-MB-231 cells more than MCF-7 cells. Adding TQ to TRAIL increased the chemo-sensitivity of MDA-MB-231, while overcame the MCF-7 resistance to TRAIL. CONCLUSION: In conclusion, there is a synergistic effect between TRAIL and TQ playing a therapeutic role in killing resistant breast cancer cells. |
---|