Cargando…
Whole genome sequencing of two human rhinovirus A types (A101 and A15) detected in Kenya, 2016-2018
Background: Virus genome sequencing is increasingly utilized in epidemiological surveillance. Genomic data allows comprehensive evaluation of underlying viral diversity and epidemiology to inform control. For human rhinovirus (HRV), genomic amplification and sequencing is challenging due to numerous...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
F1000 Research Limited
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8408540/ https://www.ncbi.nlm.nih.gov/pubmed/34522789 http://dx.doi.org/10.12688/wellcomeopenres.16911.2 |
_version_ | 1783746845126688768 |
---|---|
author | Luka, Martha M. Kamau, Everlyn de Laurent, Zaydah R. Morobe, John Mwita Alii, Leonard K. Nokes, D. James Agoti, Charles N. |
author_facet | Luka, Martha M. Kamau, Everlyn de Laurent, Zaydah R. Morobe, John Mwita Alii, Leonard K. Nokes, D. James Agoti, Charles N. |
author_sort | Luka, Martha M. |
collection | PubMed |
description | Background: Virus genome sequencing is increasingly utilized in epidemiological surveillance. Genomic data allows comprehensive evaluation of underlying viral diversity and epidemiology to inform control. For human rhinovirus (HRV), genomic amplification and sequencing is challenging due to numerous types, high genetic diversity and inadequate reference sequences. Methods: We developed a tiled amplicon type-specific protocol for genome amplification and sequencing on the Illumina MiSeq platform of two HRV types, A15 and A101. We then assessed added value in analyzing whole genomes relative to the VP4/2 region only in the investigation of HRV molecular epidemiology within the community in Kilifi, coastal Kenya. Results: We processed 73 nasopharyngeal swabs collected between 2016-2018, and 48 yielded at least 70% HRV genome coverage. These included all A101 samples (n=10) and 38 (60.3%) A15 samples. Phylogenetic analysis revealed that the Kilifi A101 sequences interspersed with global A101 genomes available in GenBank collected between 1999-2016. On the other hand, our A15 sequences formed a monophyletic group separate from the global genomes collected in 2008 and 2019. An improved phylogenetic resolution was observed with the genome phylogenies compared to the VP4/2 phylogenies. Conclusions: We present a type-specific full genome sequencing approach for obtaining HRV genomic data and characterizing infections. |
format | Online Article Text |
id | pubmed-8408540 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | F1000 Research Limited |
record_format | MEDLINE/PubMed |
spelling | pubmed-84085402021-09-13 Whole genome sequencing of two human rhinovirus A types (A101 and A15) detected in Kenya, 2016-2018 Luka, Martha M. Kamau, Everlyn de Laurent, Zaydah R. Morobe, John Mwita Alii, Leonard K. Nokes, D. James Agoti, Charles N. Wellcome Open Res Research Article Background: Virus genome sequencing is increasingly utilized in epidemiological surveillance. Genomic data allows comprehensive evaluation of underlying viral diversity and epidemiology to inform control. For human rhinovirus (HRV), genomic amplification and sequencing is challenging due to numerous types, high genetic diversity and inadequate reference sequences. Methods: We developed a tiled amplicon type-specific protocol for genome amplification and sequencing on the Illumina MiSeq platform of two HRV types, A15 and A101. We then assessed added value in analyzing whole genomes relative to the VP4/2 region only in the investigation of HRV molecular epidemiology within the community in Kilifi, coastal Kenya. Results: We processed 73 nasopharyngeal swabs collected between 2016-2018, and 48 yielded at least 70% HRV genome coverage. These included all A101 samples (n=10) and 38 (60.3%) A15 samples. Phylogenetic analysis revealed that the Kilifi A101 sequences interspersed with global A101 genomes available in GenBank collected between 1999-2016. On the other hand, our A15 sequences formed a monophyletic group separate from the global genomes collected in 2008 and 2019. An improved phylogenetic resolution was observed with the genome phylogenies compared to the VP4/2 phylogenies. Conclusions: We present a type-specific full genome sequencing approach for obtaining HRV genomic data and characterizing infections. F1000 Research Limited 2021-09-23 /pmc/articles/PMC8408540/ /pubmed/34522789 http://dx.doi.org/10.12688/wellcomeopenres.16911.2 Text en Copyright: © 2021 Luka MM et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Luka, Martha M. Kamau, Everlyn de Laurent, Zaydah R. Morobe, John Mwita Alii, Leonard K. Nokes, D. James Agoti, Charles N. Whole genome sequencing of two human rhinovirus A types (A101 and A15) detected in Kenya, 2016-2018 |
title | Whole genome sequencing of two human rhinovirus A types (A101 and A15) detected in Kenya, 2016-2018 |
title_full | Whole genome sequencing of two human rhinovirus A types (A101 and A15) detected in Kenya, 2016-2018 |
title_fullStr | Whole genome sequencing of two human rhinovirus A types (A101 and A15) detected in Kenya, 2016-2018 |
title_full_unstemmed | Whole genome sequencing of two human rhinovirus A types (A101 and A15) detected in Kenya, 2016-2018 |
title_short | Whole genome sequencing of two human rhinovirus A types (A101 and A15) detected in Kenya, 2016-2018 |
title_sort | whole genome sequencing of two human rhinovirus a types (a101 and a15) detected in kenya, 2016-2018 |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8408540/ https://www.ncbi.nlm.nih.gov/pubmed/34522789 http://dx.doi.org/10.12688/wellcomeopenres.16911.2 |
work_keys_str_mv | AT lukamartham wholegenomesequencingoftwohumanrhinovirusatypesa101anda15detectedinkenya20162018 AT kamaueverlyn wholegenomesequencingoftwohumanrhinovirusatypesa101anda15detectedinkenya20162018 AT delaurentzaydahr wholegenomesequencingoftwohumanrhinovirusatypesa101anda15detectedinkenya20162018 AT morobejohnmwita wholegenomesequencingoftwohumanrhinovirusatypesa101anda15detectedinkenya20162018 AT aliileonardk wholegenomesequencingoftwohumanrhinovirusatypesa101anda15detectedinkenya20162018 AT nokesdjames wholegenomesequencingoftwohumanrhinovirusatypesa101anda15detectedinkenya20162018 AT agoticharlesn wholegenomesequencingoftwohumanrhinovirusatypesa101anda15detectedinkenya20162018 |