Cargando…
Gender Prediction for a Multiethnic Population via Deep Learning Across Different Retinal Fundus Photograph Fields: Retrospective Cross-sectional Study
BACKGROUND: Deep learning algorithms have been built for the detection of systemic and eye diseases based on fundus photographs. The retina possesses features that can be affected by gender differences, and the extent to which these features are captured via photography differs depending on the reti...
Autores principales: | Betzler, Bjorn Kaijun, Yang, Henrik Hee Seung, Thakur, Sahil, Yu, Marco, Quek, Ten Cheer, Soh, Zhi Da, Lee, Geunyoung, Tham, Yih-Chung, Wong, Tien Yin, Rim, Tyler Hyungtaek, Cheng, Ching-Yu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8408758/ https://www.ncbi.nlm.nih.gov/pubmed/34402800 http://dx.doi.org/10.2196/25165 |
Ejemplares similares
-
Retinal photograph-based deep learning predicts biological age, and stratifies morbidity and mortality risk
por: Nusinovici, Simon, et al.
Publicado: (2022) -
Associations between Chronic Kidney Disease and Thinning of Neuroretinal Layers in Multiethnic Asian and White Populations
por: Majithia, Shivani, et al.
Publicado: (2023) -
Artificial Intelligence in Predicting Systemic Parameters and Diseases From Ophthalmic Imaging
por: Betzler, Bjorn Kaijun, et al.
Publicado: (2022) -
Deep learning algorithms for automatic detection of pterygium using anterior segment photographs from slit-lamp and hand-held cameras
por: Fang, Xiaoling, et al.
Publicado: (2022) -
High-Density Lipoprotein Cholesterol in Age-Related Ocular Diseases
por: Betzler, Bjorn Kaijun, et al.
Publicado: (2020)