Cargando…

AMULET: a novel read count-based method for effective multiplet detection from single nucleus ATAC-seq data

Detecting multiplets in single nucleus (sn)ATAC-seq data is challenging due to data sparsity and limited dynamic range. AMULET (ATAC-seq MULtiplet Estimation Tool) enumerates regions with greater than two uniquely aligned reads across the genome to effectively detect multiplets. We evaluate the meth...

Descripción completa

Detalles Bibliográficos
Autores principales: Thibodeau, Asa, Eroglu, Alper, McGinnis, Christopher S., Lawlor, Nathan, Nehar-Belaid, Djamel, Kursawe, Romy, Marches, Radu, Conrad, Daniel N., Kuchel, George A., Gartner, Zev J., Banchereau, Jacques, Stitzel, Michael L., Cicek, A. Ercument, Ucar, Duygu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8408950/
https://www.ncbi.nlm.nih.gov/pubmed/34465366
http://dx.doi.org/10.1186/s13059-021-02469-x
_version_ 1783746897206312960
author Thibodeau, Asa
Eroglu, Alper
McGinnis, Christopher S.
Lawlor, Nathan
Nehar-Belaid, Djamel
Kursawe, Romy
Marches, Radu
Conrad, Daniel N.
Kuchel, George A.
Gartner, Zev J.
Banchereau, Jacques
Stitzel, Michael L.
Cicek, A. Ercument
Ucar, Duygu
author_facet Thibodeau, Asa
Eroglu, Alper
McGinnis, Christopher S.
Lawlor, Nathan
Nehar-Belaid, Djamel
Kursawe, Romy
Marches, Radu
Conrad, Daniel N.
Kuchel, George A.
Gartner, Zev J.
Banchereau, Jacques
Stitzel, Michael L.
Cicek, A. Ercument
Ucar, Duygu
author_sort Thibodeau, Asa
collection PubMed
description Detecting multiplets in single nucleus (sn)ATAC-seq data is challenging due to data sparsity and limited dynamic range. AMULET (ATAC-seq MULtiplet Estimation Tool) enumerates regions with greater than two uniquely aligned reads across the genome to effectively detect multiplets. We evaluate the method by generating snATAC-seq data in the human blood and pancreatic islet samples. AMULET has high precision, estimated via donor-based multiplexing, and high recall, estimated via simulated multiplets, compared to alternatives and identifies multiplets most effectively when a certain read depth of 25K median valid reads per nucleus is achieved. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13059-021-02469-x.
format Online
Article
Text
id pubmed-8408950
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-84089502021-09-01 AMULET: a novel read count-based method for effective multiplet detection from single nucleus ATAC-seq data Thibodeau, Asa Eroglu, Alper McGinnis, Christopher S. Lawlor, Nathan Nehar-Belaid, Djamel Kursawe, Romy Marches, Radu Conrad, Daniel N. Kuchel, George A. Gartner, Zev J. Banchereau, Jacques Stitzel, Michael L. Cicek, A. Ercument Ucar, Duygu Genome Biol Method Detecting multiplets in single nucleus (sn)ATAC-seq data is challenging due to data sparsity and limited dynamic range. AMULET (ATAC-seq MULtiplet Estimation Tool) enumerates regions with greater than two uniquely aligned reads across the genome to effectively detect multiplets. We evaluate the method by generating snATAC-seq data in the human blood and pancreatic islet samples. AMULET has high precision, estimated via donor-based multiplexing, and high recall, estimated via simulated multiplets, compared to alternatives and identifies multiplets most effectively when a certain read depth of 25K median valid reads per nucleus is achieved. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13059-021-02469-x. BioMed Central 2021-09-01 /pmc/articles/PMC8408950/ /pubmed/34465366 http://dx.doi.org/10.1186/s13059-021-02469-x Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
spellingShingle Method
Thibodeau, Asa
Eroglu, Alper
McGinnis, Christopher S.
Lawlor, Nathan
Nehar-Belaid, Djamel
Kursawe, Romy
Marches, Radu
Conrad, Daniel N.
Kuchel, George A.
Gartner, Zev J.
Banchereau, Jacques
Stitzel, Michael L.
Cicek, A. Ercument
Ucar, Duygu
AMULET: a novel read count-based method for effective multiplet detection from single nucleus ATAC-seq data
title AMULET: a novel read count-based method for effective multiplet detection from single nucleus ATAC-seq data
title_full AMULET: a novel read count-based method for effective multiplet detection from single nucleus ATAC-seq data
title_fullStr AMULET: a novel read count-based method for effective multiplet detection from single nucleus ATAC-seq data
title_full_unstemmed AMULET: a novel read count-based method for effective multiplet detection from single nucleus ATAC-seq data
title_short AMULET: a novel read count-based method for effective multiplet detection from single nucleus ATAC-seq data
title_sort amulet: a novel read count-based method for effective multiplet detection from single nucleus atac-seq data
topic Method
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8408950/
https://www.ncbi.nlm.nih.gov/pubmed/34465366
http://dx.doi.org/10.1186/s13059-021-02469-x
work_keys_str_mv AT thibodeauasa amuletanovelreadcountbasedmethodforeffectivemultipletdetectionfromsinglenucleusatacseqdata
AT eroglualper amuletanovelreadcountbasedmethodforeffectivemultipletdetectionfromsinglenucleusatacseqdata
AT mcginnischristophers amuletanovelreadcountbasedmethodforeffectivemultipletdetectionfromsinglenucleusatacseqdata
AT lawlornathan amuletanovelreadcountbasedmethodforeffectivemultipletdetectionfromsinglenucleusatacseqdata
AT neharbelaiddjamel amuletanovelreadcountbasedmethodforeffectivemultipletdetectionfromsinglenucleusatacseqdata
AT kursaweromy amuletanovelreadcountbasedmethodforeffectivemultipletdetectionfromsinglenucleusatacseqdata
AT marchesradu amuletanovelreadcountbasedmethodforeffectivemultipletdetectionfromsinglenucleusatacseqdata
AT conraddanieln amuletanovelreadcountbasedmethodforeffectivemultipletdetectionfromsinglenucleusatacseqdata
AT kuchelgeorgea amuletanovelreadcountbasedmethodforeffectivemultipletdetectionfromsinglenucleusatacseqdata
AT gartnerzevj amuletanovelreadcountbasedmethodforeffectivemultipletdetectionfromsinglenucleusatacseqdata
AT banchereaujacques amuletanovelreadcountbasedmethodforeffectivemultipletdetectionfromsinglenucleusatacseqdata
AT stitzelmichaell amuletanovelreadcountbasedmethodforeffectivemultipletdetectionfromsinglenucleusatacseqdata
AT cicekaercument amuletanovelreadcountbasedmethodforeffectivemultipletdetectionfromsinglenucleusatacseqdata
AT ucarduygu amuletanovelreadcountbasedmethodforeffectivemultipletdetectionfromsinglenucleusatacseqdata