Cargando…

Inhibition of HDAC1 alleviates monocrotaline-induced pulmonary arterial remodeling through up-regulation of miR-34a

BACKGROUND: It has been found that up-regulation of histone deacetylases 1 (HDAC1) is involved in the development of pulmonary arterial hypertension (PAH). However, it is still unclear whether inhibition of HDAC1 suppresses the development of PAH via restoring miR-34a level in monocrotaline (MCT)-in...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Fangwei, Wang, Dan, Wang, Hong, Chen, Lijun, Sun, Xilu, Wan, Yixin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8408973/
https://www.ncbi.nlm.nih.gov/pubmed/34465322
http://dx.doi.org/10.1186/s12931-021-01832-7
Descripción
Sumario:BACKGROUND: It has been found that up-regulation of histone deacetylases 1 (HDAC1) is involved in the development of pulmonary arterial hypertension (PAH). However, it is still unclear whether inhibition of HDAC1 suppresses the development of PAH via restoring miR-34a level in monocrotaline (MCT)-induced PAH rats. METHODS: PAH rat models were induced by intraperitoneal injection of MCT. HDAC1 was suppressed by intraperitoneal injection of the class I HDAC inhibitor MS-275, and miR-34a was over-expressed via tail vein injection of miR-34a agomiR. RESULTS: HDAC1 protein was significantly increased in MCT-induced PAH rats; this was accompanied with down-regulation of miR-34a and subsequent up-regulation of matrix metalloproteinase 9 (MMP-9)/tissue inhibitor of metalloproteinase 1 (TIMP-1) and MMP-2/TIMP-2. Administration of PAH rats with MS-275 or miR-34a agomiR dramatically abolished MCT-induced reduction of miR-34a and subsequent up-regulation of MMP-9/TIMP-1 and MMP-2/TIMP-2, finally reduced extracellular matrix (ECM) accumulation, pulmonary arterial remodeling, right ventricular systolic pressure (RVSP) and right ventricle hypertrophy index (RVHI) in PAH rats. CONCLUSIONS: HDAC1 contributes to the development of MCT-induced rat PAH by suppressing miR-34a level and subsequently up-regulating the ratio of MMP-9/TIMP-1 and MMP-2/TIMP-2. Inhibition of HDAC1 alleviates pulmonary arterial remodeling and PAH through up-regulation of miR-34a level and subsequent reduction of MMP-9/TIMP-1 and MMP-2/TIMP-2, suggesting that inhibition of HDAC1 might have potential value in the management of PAH.