Cargando…

Superspreading and heterogeneity in transmission of SARS, MERS, and COVID-19: A systematic review

BACKGROUND: Severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and coronavirus disease 2019 (COVID-19) have caused substantial public health burdens and global health threats. Understanding the superspreading potentials of these viruses are important for characterizin...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Jingxuan, Chen, Xiao, Guo, Zihao, Zhao, Shi, Huang, Ziyue, Zhuang, Zian, Wong, Eliza Lai-yi, Zee, Benny Chung-Ying, Chong, Marc Ka Chun, Wang, Maggie Haitian, Yeoh, Eng Kiong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Research Network of Computational and Structural Biotechnology 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8409018/
https://www.ncbi.nlm.nih.gov/pubmed/34484618
http://dx.doi.org/10.1016/j.csbj.2021.08.045
Descripción
Sumario:BACKGROUND: Severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and coronavirus disease 2019 (COVID-19) have caused substantial public health burdens and global health threats. Understanding the superspreading potentials of these viruses are important for characterizing transmission patterns and informing strategic decision-making in disease control. This systematic review aimed to summarize the existing evidence on superspreading features and to compare the heterogeneity in transmission within and among various betacoronavirus epidemics of SARS, MERS and COVID-19. METHODS: PubMed, MEDLINE, and Embase databases were extensively searched for original studies on the transmission heterogeneity of SARS, MERS, and COVID-19 published in English between January 1, 2003, and February 10, 2021. After screening the articles, we extracted data pertaining to the estimated dispersion parameter (k) which has been a commonly-used measurement for superspreading potential. FINDINGS: We included a total of 60 estimates of transmission heterogeneity from 26 studies on outbreaks in 22 regions. The majority (90%) of the k estimates were small, with values less than 1, indicating an over-dispersed transmission pattern. The point estimates of k for SARS and MERS ranged from 0.12 to 0.20 and from 0.06 to 2.94, respectively. Among 45 estimates of individual-level transmission heterogeneity for COVID-19 from 17 articles, 91% were derived from Asian regions. The point estimates of k for COVID-19 ranged between 0.1 and 5.0. CONCLUSIONS: We detected a substantial over-dispersed transmission pattern in all three coronaviruses, while the k estimates varied by differences in study design and public health capacity. Our findings suggested that even with a reduced R value, the epidemic still has a high resurgence potential due to transmission heterogeneity.