Cargando…
Radiomics and machine learning applications in rectal cancer: Current update and future perspectives
The high incidence of rectal cancer in both sexes makes it one of the most common tumors, with significant morbidity and mortality rates. To define the best treatment option and optimize patient outcome, several rectal cancer biological variables must be evaluated. Currently, medical imaging plays a...
Autores principales: | Stanzione, Arnaldo, Verde, Francesco, Romeo, Valeria, Boccadifuoco, Francesca, Mainenti, Pier Paolo, Maurea, Simone |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Baishideng Publishing Group Inc
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8409167/ https://www.ncbi.nlm.nih.gov/pubmed/34539134 http://dx.doi.org/10.3748/wjg.v27.i32.5306 |
Ejemplares similares
-
State of the art in abdominal MRI structured reporting: a review
por: Stanzione, Arnaldo, et al.
Publicado: (2020) -
Radiomics in Cross-Sectional Adrenal Imaging: A Systematic Review and Quality Assessment Study
por: Stanzione, Arnaldo, et al.
Publicado: (2022) -
Oncologic Imaging and Radiomics: A Walkthrough Review of Methodological Challenges
por: Stanzione, Arnaldo, et al.
Publicado: (2022) -
Colorectal cancer: Parametric evaluation of morphological, functional and molecular tomographic imaging
por: Mainenti, Pier Paolo, et al.
Publicado: (2019) -
MRI Radiomics and Machine Learning for the Prediction of Oncotype Dx Recurrence Score in Invasive Breast Cancer
por: Romeo, Valeria, et al.
Publicado: (2023)