Cargando…

Prediction model for malignant pulmonary nodules based on cfMeDIP‐seq and machine learning

Cell‐free methylated DNA immunoprecipitation and high‐throughput sequencing (cfMeDIP‐seq) is a new bisulfite‐free technique, which can detect the whole‐genome methylation of blood cell‐free DNA (cfDNA). Using this technique, we identified differentially methylated regions (DMR) of cfDNA between lung...

Descripción completa

Detalles Bibliográficos
Autores principales: Qi, Jian, Hong, Bo, Tao, Rui, Sun, Ruifang, Zhang, Huanhu, Zhang, Xiaopeng, Ji, Jie, Wang, Shujie, Liu, Yanzhe, Deng, Qingmei, Wang, Hongzhi, Zhao, Dahai, Nie, Jinfu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8409309/
https://www.ncbi.nlm.nih.gov/pubmed/34251068
http://dx.doi.org/10.1111/cas.15052
_version_ 1783746973293084672
author Qi, Jian
Hong, Bo
Tao, Rui
Sun, Ruifang
Zhang, Huanhu
Zhang, Xiaopeng
Ji, Jie
Wang, Shujie
Liu, Yanzhe
Deng, Qingmei
Wang, Hongzhi
Zhao, Dahai
Nie, Jinfu
author_facet Qi, Jian
Hong, Bo
Tao, Rui
Sun, Ruifang
Zhang, Huanhu
Zhang, Xiaopeng
Ji, Jie
Wang, Shujie
Liu, Yanzhe
Deng, Qingmei
Wang, Hongzhi
Zhao, Dahai
Nie, Jinfu
author_sort Qi, Jian
collection PubMed
description Cell‐free methylated DNA immunoprecipitation and high‐throughput sequencing (cfMeDIP‐seq) is a new bisulfite‐free technique, which can detect the whole‐genome methylation of blood cell‐free DNA (cfDNA). Using this technique, we identified differentially methylated regions (DMR) of cfDNA between lung tumors and normal controls. Based on the top 300 DMR, we built a random forest prediction model, which was able to distinguish malignant lung tumors from normal controls with high sensitivity and specificity of 91.0% and 93.3% (AUROC curve of 0.963). In summary, we reported a non–invasive prediction model that had good ability to distinguish malignant pulmonary nodules.
format Online
Article
Text
id pubmed-8409309
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-84093092021-09-03 Prediction model for malignant pulmonary nodules based on cfMeDIP‐seq and machine learning Qi, Jian Hong, Bo Tao, Rui Sun, Ruifang Zhang, Huanhu Zhang, Xiaopeng Ji, Jie Wang, Shujie Liu, Yanzhe Deng, Qingmei Wang, Hongzhi Zhao, Dahai Nie, Jinfu Cancer Sci Reports Cell‐free methylated DNA immunoprecipitation and high‐throughput sequencing (cfMeDIP‐seq) is a new bisulfite‐free technique, which can detect the whole‐genome methylation of blood cell‐free DNA (cfDNA). Using this technique, we identified differentially methylated regions (DMR) of cfDNA between lung tumors and normal controls. Based on the top 300 DMR, we built a random forest prediction model, which was able to distinguish malignant lung tumors from normal controls with high sensitivity and specificity of 91.0% and 93.3% (AUROC curve of 0.963). In summary, we reported a non–invasive prediction model that had good ability to distinguish malignant pulmonary nodules. John Wiley and Sons Inc. 2021-07-21 2021-09 /pmc/articles/PMC8409309/ /pubmed/34251068 http://dx.doi.org/10.1111/cas.15052 Text en © 2021 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
spellingShingle Reports
Qi, Jian
Hong, Bo
Tao, Rui
Sun, Ruifang
Zhang, Huanhu
Zhang, Xiaopeng
Ji, Jie
Wang, Shujie
Liu, Yanzhe
Deng, Qingmei
Wang, Hongzhi
Zhao, Dahai
Nie, Jinfu
Prediction model for malignant pulmonary nodules based on cfMeDIP‐seq and machine learning
title Prediction model for malignant pulmonary nodules based on cfMeDIP‐seq and machine learning
title_full Prediction model for malignant pulmonary nodules based on cfMeDIP‐seq and machine learning
title_fullStr Prediction model for malignant pulmonary nodules based on cfMeDIP‐seq and machine learning
title_full_unstemmed Prediction model for malignant pulmonary nodules based on cfMeDIP‐seq and machine learning
title_short Prediction model for malignant pulmonary nodules based on cfMeDIP‐seq and machine learning
title_sort prediction model for malignant pulmonary nodules based on cfmedip‐seq and machine learning
topic Reports
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8409309/
https://www.ncbi.nlm.nih.gov/pubmed/34251068
http://dx.doi.org/10.1111/cas.15052
work_keys_str_mv AT qijian predictionmodelformalignantpulmonarynodulesbasedoncfmedipseqandmachinelearning
AT hongbo predictionmodelformalignantpulmonarynodulesbasedoncfmedipseqandmachinelearning
AT taorui predictionmodelformalignantpulmonarynodulesbasedoncfmedipseqandmachinelearning
AT sunruifang predictionmodelformalignantpulmonarynodulesbasedoncfmedipseqandmachinelearning
AT zhanghuanhu predictionmodelformalignantpulmonarynodulesbasedoncfmedipseqandmachinelearning
AT zhangxiaopeng predictionmodelformalignantpulmonarynodulesbasedoncfmedipseqandmachinelearning
AT jijie predictionmodelformalignantpulmonarynodulesbasedoncfmedipseqandmachinelearning
AT wangshujie predictionmodelformalignantpulmonarynodulesbasedoncfmedipseqandmachinelearning
AT liuyanzhe predictionmodelformalignantpulmonarynodulesbasedoncfmedipseqandmachinelearning
AT dengqingmei predictionmodelformalignantpulmonarynodulesbasedoncfmedipseqandmachinelearning
AT wanghongzhi predictionmodelformalignantpulmonarynodulesbasedoncfmedipseqandmachinelearning
AT zhaodahai predictionmodelformalignantpulmonarynodulesbasedoncfmedipseqandmachinelearning
AT niejinfu predictionmodelformalignantpulmonarynodulesbasedoncfmedipseqandmachinelearning