Cargando…
Detecting sarcasm in multi-domain datasets using convolutional neural networks and long short term memory network model
Sarcasm emerges as a common phenomenon across social networking sites because people express their negative thoughts, hatred and opinions using positive vocabulary which makes it a challenging task to detect sarcasm. Although various studies have investigated the sarcasm detection on baseline datase...
Autores principales: | Jamil, Ramish, Ashraf, Imran, Rustam, Furqan, Saad, Eysha, Mehmood, Arif, Choi, Gyu Sang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8409330/ https://www.ncbi.nlm.nih.gov/pubmed/34541306 http://dx.doi.org/10.7717/peerj-cs.645 |
Ejemplares similares
-
Novel extreme regression-voting classifier to predict death risk in vaccinated people using VAERS data
por: Saad, Eysha, et al.
Publicado: (2022) -
Predicting death risk analysis in fully vaccinated people using novel
extreme regression-voting classifier
por: Saad, Eysha, et al.
Publicado: (2022) -
Self voting classification model for online meeting app review sentiment analysis and topic modeling
por: Aslam, Naila, et al.
Publicado: (2022) -
Deepfake tweets classification using stacked Bi-LSTM and words embedding
por: Rupapara, Vaibhav, et al.
Publicado: (2021) -
Strategy to improve the accuracy of convolutional neural network architectures applied to digital image steganalysis in the spatial domain
por: Tabares-Soto, Reinel, et al.
Publicado: (2021)