Cargando…
Channel state information estimation for 5G wireless communication systems: recurrent neural networks approach
In this study, a deep learning bidirectional long short-term memory (BiLSTM) recurrent neural network-based channel state information estimator is proposed for 5G orthogonal frequency-division multiplexing systems. The proposed estimator is a pilot-dependent estimator and follows the online learning...
Autores principales: | Essai Ali, Mohamed Hassan, Taha, Ibrahim B.M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8409333/ https://www.ncbi.nlm.nih.gov/pubmed/34541310 http://dx.doi.org/10.7717/peerj-cs.682 |
Ejemplares similares
-
Self-supervised recurrent depth estimation with attention mechanisms
por: Makarov, Ilya, et al.
Publicado: (2022) -
Sample-level sound synthesis with recurrent neural networks and conceptors
por: Kiefer, Chris
Publicado: (2019) -
Comparison of Structural Parsers and Neural Language Models as Surprisal Estimators
por: Oh, Byung-Doh, et al.
Publicado: (2022) -
On the Adaptability of Recurrent Neural Networks for Real-Time Jazz Improvisation Accompaniment
por: Kritsis, Kosmas, et al.
Publicado: (2021) -
Convolutional Neural Network-Based Technique for Gaze Estimation on Mobile Devices
por: Akinyelu, Andronicus A., et al.
Publicado: (2022)