Cargando…
Derivative-free optimization adversarial attacks for graph convolutional networks
In recent years, graph convolutional networks (GCNs) have emerged rapidly due to their excellent performance in graph data processing. However, recent researches show that GCNs are vulnerable to adversarial attacks. An attacker can maliciously modify edges or nodes of the graph to mislead the model’...
Autores principales: | Yang, Runze, Long, Teng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8409335/ https://www.ncbi.nlm.nih.gov/pubmed/34541312 http://dx.doi.org/10.7717/peerj-cs.693 |
Ejemplares similares
-
Guiding the retraining of convolutional neural networks against adversarial inputs
por: Durán, Francisco, et al.
Publicado: (2023) -
Stock Price Forecasting by a Deep Convolutional Generative Adversarial Network
por: Staffini, Alessio
Publicado: (2022) -
Person image generation through graph-based and appearance-decomposed generative adversarial network
por: He, Yuling, et al.
Publicado: (2021) -
Image classification adversarial attack with improved resizing transformation and ensemble models
por: Li, Chenwei, et al.
Publicado: (2023) -
Relational graph convolutional networks: a closer look
por: Thanapalasingam, Thiviyan, et al.
Publicado: (2022)