Cargando…
SSMFN: a fused spatial and sequential deep learning model for methylation site prediction
BACKGROUND: Conventional in vivo methods for post-translational modification site prediction such as spectrophotometry, Western blotting, and chromatin immune precipitation can be very expensive and time-consuming. Neural networks (NN) are one of the computational approaches that can predict effecti...
Autores principales: | Lumbanraja, Favorisen Rosyking, Mahesworo, Bharuno, Cenggoro, Tjeng Wawan, Sudigyo, Digdo, Pardamean, Bens |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8409337/ https://www.ncbi.nlm.nih.gov/pubmed/34541311 http://dx.doi.org/10.7717/peerj-cs.683 |
Ejemplares similares
-
Changing Colorectal Cancer Trends in Asians: Epidemiology and Risk Factors
por: Pardamean, Carissa Ikka, et al.
Publicado: (2023) -
Comparative study of predicted miRNA between Indonesia and China (Wuhan) SARS-CoV-2: a bioinformatics analysis
por: Rahmadi, Agus, et al.
Publicado: (2021) -
A systematic literature review of machine learning application in COVID-19 medical image classification
por: Daniel, et al.
Publicado: (2023) -
Deep polygenic neural network for predicting and identifying yield-associated genes in Indonesian rice accessions
por: Dominic, Nicholas, et al.
Publicado: (2022) -
Intronic Variant of MUTYH Gene Exhibits A Strong Association with Early Onset of Breast Cancer Susceptibility in Indonesian Women Population
por: Panigoro, Sonar Soni, et al.
Publicado: (2021)