Cargando…
Automatic segmentation of gadolinium-enhancing lesions in multiple sclerosis using deep learning from clinical MRI
Gadolinium-enhancing lesions reflect active disease and are critical for in-patient monitoring in multiple sclerosis (MS). In this work, we have developed the first fully automated method to segment and count the gadolinium-enhancing lesions from routine clinical MRI of MS patients. The proposed met...
Autores principales: | Gaj, Sibaji, Ontaneda, Daniel, Nakamura, Kunio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8409666/ https://www.ncbi.nlm.nih.gov/pubmed/34469432 http://dx.doi.org/10.1371/journal.pone.0255939 |
Ejemplares similares
-
Gadolinium‐based contrast agent exposures and physical and cognitive disability in multiple sclerosis
por: Nakamura, Kunio, et al.
Publicado: (2022) -
Review of Deep Learning Approaches for the Segmentation of Multiple Sclerosis Lesions on Brain MRI
por: Zeng, Chenyi, et al.
Publicado: (2020) -
Automatic deep learning multicontrast corpus callosum segmentation in multiple sclerosis
por: Brusini, Irene, et al.
Publicado: (2022) -
Evaluating the effect of multiple sclerosis lesions on automatic brain structure segmentation
por: González-Villà, Sandra, et al.
Publicado: (2017) -
Editorial: Automatic methods for multiple sclerosis new lesions detection and segmentation
por: Commowick, Olivier, et al.
Publicado: (2023)