Cargando…
Classifying patients with depressive and anxiety disorders according to symptom network structures: A Gaussian graphical mixture model-based clustering
Patients with mental disorders often suffer from comorbidity. Transdiagnostic understandings of mental disorders are expected to provide more accurate and detailed descriptions of psychopathology and be helpful in developing efficient treatments. Although conventional clustering techniques, such as...
Autores principales: | Kashihara, Jun, Takebayashi, Yoshitake, Kunisato, Yoshihiko, Ito, Masaya |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8409670/ https://www.ncbi.nlm.nih.gov/pubmed/34469469 http://dx.doi.org/10.1371/journal.pone.0256902 |
Ejemplares similares
-
Nanopower Integrated Gaussian Mixture Model Classifier for Epileptic Seizure Prediction
por: Alimisis, Vassilis, et al.
Publicado: (2022) -
Avoiding inferior clusterings with misspecified Gaussian mixture models
por: Kasa, Siva Rajesh, et al.
Publicado: (2023) -
Clustering Single-Cell RNA-Seq Data with Regularized Gaussian Graphical Model
por: Liu, Zhenqiu
Publicado: (2021) -
Application of the Gaussian Mixture Model to Classify Stages of Electrical Tree Growth in Epoxy Resin
por: Mas’ud, Abdullahi Abubakar, et al.
Publicado: (2021) -
Model-based clustering based on sparse
finite Gaussian mixtures
por: Malsiner-Walli, Gertraud, et al.
Publicado: (2014)