Cargando…
Fast and Scalable Private Genotype Imputation Using Machine Learning and Partially Homomorphic Encryption
The recent advances in genome sequencing technologies provide unprecedented opportunities to understand the relationship between human genetic variation and diseases. However, genotyping whole genomes from a large cohort of individuals is still cost prohibitive. Imputation methods to predict genotyp...
Autores principales: | SARKAR, ESHA, CHIELLE, EDUARDO, GÜRSOY, GAMZE, MAZONKA, OLEG, GERSTEIN, MARK, MANIATAKOS, MICHAIL |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8409799/ https://www.ncbi.nlm.nih.gov/pubmed/34476144 http://dx.doi.org/10.1109/access.2021.3093005 |
Ejemplares similares
-
Privacy-preserving cancer type prediction with homomorphic encryption
por: Sarkar, Esha, et al.
Publicado: (2023) -
Private genome analysis through homomorphic encryption
por: Kim, Miran, et al.
Publicado: (2015) -
Private Genomes and Public SNPs: Homomorphic Encryption of Genotypes and Phenotypes for Shared Quantitative Genetics
por: Mott, Richard, et al.
Publicado: (2020) -
Secure Inference on Homomorphically Encrypted Genotype Data with Encrypted Linear Models
por: Zou, Meng, et al.
Publicado: (2023) -
Achieving GWAS with homomorphic encryption
por: Sim, Jun Jie, et al.
Publicado: (2020)